DOI QR코드

DOI QR Code

Evaluation of Maintenance Quantity and Life Cycle Costs of Railway Track Considering Evolution of Rail Fatigue Damage and Ballast Settlement According to Track Quality Level

궤도 품질수준에 따른 레일 피로 손상과 자갈 침하 진전을 고려한 철도 궤도 보수량 및 수명주기비용 평가

  • Jun-Hyuck Choi ;
  • Seung-Yup Jang (Department of Transportation System Engineering, Graduate School of Transportation, Korea National University of Transportation) ;
  • Seung-Won You ;
  • Do-Yeop Kim ;
  • Hyung-Jo Kim
  • 최준혁 (국립한국교통대학교) ;
  • 장승엽 (국립한국교통대학교) ;
  • 유승원 (한국철도공사, 국립한국교통대학교) ;
  • 김도엽 (한국철도공사, 국립한국교통대학교) ;
  • 김형조 (한국철도공사, 국립한국교통대학교)
  • Received : 2024.07.16
  • Accepted : 2024.07.29
  • Published : 2024.08.31

Abstract

This study proposes a track maintenance quantity estimation model that considers evolution of rail fatigue damage and ballast settlement based on actual maintenance data from the Gyeongbu high-speed railway, and revises the existing life cycle cost (LCC) model for railway track. Using this model, maintenance quantities and life cycle costs based on different track quality levels are evaluated and discussed. According to the results, it is confirmed that applying the track maintenance quantity estimation model that accounts for rail fatigue damage and ballast settlement allows us to reasonably estimate maintenance costs close to the actual data. The track quality coefficient significantly influences both rail and ballast maintenance quantities, with ballast maintenance having a greater impact than rail maintenance. Additionally, as train speed increases, both rail and ballast maintenance quantities rise. Moreover, a higher track quality coefficient leads to a steeper increase in maintenance quantities with increasing train speed. Consequently, LCC also exhibits a faster growth rate over time with higher track quality coefficients and faster train speeds, resulting from an increased proportion of maintenance costs.

이 연구에서는 철도 궤도의 수명주기비용(life cycle cost, LCC)를 보다 합리적으로 평가하기 위하여 실제 경부고속철도의 궤도 유지보수 데이터를 이용하여 열차 하중의 반복에 따른 레일의 피로 손상과 자갈 침하 진전을 고려한 궤도 보수량 추정 모델을 제시하여 기존 궤도 LCC 모델을 수정 보완하고 이 모델을 이용하여 궤도 품질수준에 따른 유지보수량과 수명주기비용을 분석하였다. 연구결과에 따르면 레일의 피로 손상 진전과 자갈 침하 진전을 고려한 궤도 보수량 추정모델을 적용한 결과 유지보수비를 실제 유지보수 비용에 가깝게 합리적으로 산정할 수 있음을 확인하였다. 궤도품질 영향계수는 레일 보수량 및 자갈다짐 보수량 그리고 결과적으로 유지보수비에도 상당한 영향을 미치고, 레일 보수량 보다 자갈다짐 보수량에 더 큰 영향을 미치는 것으로 나타났다. 또한 열차속도가 증가하면 레일 보수량과 자갈다짐 보수량이 증가하고, 궤도품질 영향계수가 클수록 열차속도에 따른 보수량의 증가율이 더 커지는 것으로 나타났다. 이에 따라 LCC 또한 궤도품질 영향계수가 클수록 열차속도가 커질수록 시간에 따른 증가속도가 빠르고, 유지보수비가 차지하는 비중이 증가하는 것으로 나타났다.

Keywords

Acknowledgement

이 연구는 2024년 국립한국교통대학교 산학협력단의 지원을 받아 수행하였습니다.

References

  1. Ahn, S. H. (2008), Amendment and Complement of General Guidelines for Pre-feasibility Study, Research Report, 5th ed., Korea Development Institute, Korea Ministry of Strategy and Finance (in Korean).
  2. Esveld, C. (2001), Modern Railway Track, 2nd ed., MRT-productions, Zaltbommel.
  3. Ishida, M. (1990), Relationship between Rail Surface Irregularity and Bending Fatigue of Welded Part in Long Rails, RTRI Report, 4(7) (in Japanese).
  4. IITB (1998), Remain: Modular System for Reliability and Maintainability Management in European Rail Transport, Transport Research Fourth Framework Programme, Rail Transport DG VII - 74.
  5. Jang, S. Y. (2011), Development of Environment-friendly Track Technology (Precast Concrete Slab Track and Paved Track), Research Report, Korea Railroad Research Institute (in Korean).
  6. Jang, S. Y. (2014), Types of cracks and damage of concrete track at early ages in Kyeong-Bu high speed railways and its counterasures, Magazine of the Korea Concrete Institute, 26(1), 54-58 (in Korean).
  7. Jang, S. Y. (2016), Analysis of Life Cycle Costs of Railway Track : A Case Study for Ballasted and Concrete Track for High-Speed Railway, Journal of The Korea Institute for Structural Maintenance and Inspection, 20(2), 110-121 (in Korean).
  8. Kim, M. C. (2017), Condition Evaluation of Gyeongbu High-Speed Railway Track and Development of Renovation Strategy, Research Report, Korea Railroad Research Institute, Korea Rail Network Authority (in Korean).
  9. Yang, S. C. (2001), A Study on Track Life Cycle Cost Evaluation and Design Technology, Basic Technology Research for Railroad Systems, Research Report, Korea Railroad Research Institute (in Korean).
  10. KR C-14030 (2021), Ballasted Track Structure, Korea National Railway (in Korean).
  11. KRNA (Korea Rail Network Authority) (2012), Guidelines for Track Maintenance (in Korean).
  12. Nissen, A. (2009), Development of Life Cycle Cost Model and Analyses for Railway Switches and Crossings, Doctoral dissertation, Division of Operation and Maintenance Engineering, Department of Civil, Mining and Environmental Engineering, Lulea University of Technoloy.
  13. ORE (1988), Question D161, Dynamic vehicle/track phenomena, from the point of view of track maintenance, Report No.3, Final report, Office for Research and Experiments (ORE) of the International Union of Railways (UIC).
  14. Putallaz, Y., and Rivier, R. (2003), Modelling long term infrastructure capacity evolution and policy assessment regarding infrastructure maintenance and renewal, IMPROVERAIL - Infrastructure Capacity and Resources Management, 3rd Swiss Transport Research Conference, Monte Verita / Ascona, March 19-21, 2003.
  15. Statistics Korea (2023), Korean Statistical Information Service (KOSIS), https://kosis.kr.
  16. Sung, D. R. (2010), A Study on the Prediction of Rail Fatigue Life through Vehicle/Track Interaction Analysis, Ph.D. Dissertation, Graduate School of Railway, Seoul National University of Science and Technology, Seoul (in Korean).
  17. UIC (2003), UIC Study Targets Infrastructure Costs, Railway Gazette International, 159(3), 130-132.
  18. Zoeteman, A. (2004), Railway Design and Maintenance from a Life-Cycle Cost Perspective: A Decision-Support Approach, TRAIL Thesis Series No. T2004/7, The Netherland TRAIL Research School, Delft, The Netherlands.