• Title/Summary/Keyword: rail material

Search Result 211, Processing Time 0.029 seconds

Study on the Dynamic Behavior Characteristics due to the Unbalance High Speed Railway Vehicle Wheel (고속철도차량용 차륜 불평형에 의한 동적 거동 특성 연구)

  • Lee, Seung-Yil;Song, Moon-Shuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.175-181
    • /
    • 2016
  • This occurs when the unbalanced rotating body is inconsistent with the mass center line axis geometric center line. Wheelsets are assembled by a single axle with two wheels and a rotating body of a running railway vehicle. Owing to non-uniformity of the wheel material, the wear, and error of the wheel and axle assembly may cause an imbalance. Wheelsets will suffer the effects of vibrations due to the unbalanced mass, which becomes more pronounced due to the thin and high-speed rotation compared to the shaft diameter This can affect the driving safety and the running behavior of a rail car during high-speed running. Therefore, this study examined this unbalanced wheel using a railway vehicle multibody dynamics analysis tool to assess the impact of the dynamic VI-Rail movement of high-speed railway vehicles. Increasing the extent of wheel imbalance on the analysis confirmed that the critical speed of a railway vehicle bogie is reduced and the high-speed traveling dropped below the vehicle dynamic behaviour. Therefore, the adverse effects of the amount of a wheel imbalance on travel highlight the need for management of wheel imbalances. In addition, the static and dynamic management needs of a wheel imbalance need to be presented to the national rail vehicles operating agency.

Investigation of the Bond and Deformation Characteristics between an Asphalt layer and a Concrete Slab used as the Trackbed Foundation of an Embedded Rail System for Wireless Trams (무가선 트램용 매립형궤도 아스팔트 포장층의 부착특성 및 변형발생특성 분석)

  • Cho, Hojin;Kang, Yunsuk;Lee, Suhyung;Park, Jeabeom;Lim, Yujin
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.2
    • /
    • pp.224-233
    • /
    • 2016
  • Embedded Railway Systems (ERS) will be adapted for wireless trams and will be constructed along city roadways. An asphalt layer should be overlaid on top of the concrete slab used as the trackbed structure in order to ensure smoothness and surface levels equal to those of existing road pavement in downtown city areas. However, the characteristics of an asphalt layer when used as overlay pavement for an ERS are complicated and the behavior of this material is not yet well defined and understood. Therefore, in this study, laboratory shear and tensile bond strength tests were conducted to investigate the bonding behavior of an asphalt layer in a multilayered trackbed section of an ERS. For the laboratory tests, a waterproof coating material was selected as a bonding material between the asphalt overlay and a concrete specimen. Valuable design parameters could be obtained based on the tensile and shear bond strength test results, providing information about the serviceability and durability of the overlaid pavements to be constructed alongside the ERS for wireless trams. In addition, a deformation analysis to assess the tensile strain generated due to truck axle loads at the interface between the asphalt layer and the concrete slab was conducted to verify the stability and performance of the asphalt layer.

Modelling of Shear Localisation in Geomaterials

  • Lee, Jun-Seok;Pan
    • Geotechnical Engineering
    • /
    • v.13 no.3
    • /
    • pp.21-32
    • /
    • 1997
  • In this paper, an enhanced finite element model based on homogenisation technique is proposed to capture the localized failure mode of the intact rock masses. For this, bifurcation analysis at the element level is performed and, once the bifurcation is detected, equivalent material properties of the shear band and neighbouring intact rock are used to trace the post -peak behaviour of the material. It is demonstrated that mesh sensitivity of the strain softening model is overcome and progressive failure mode of rock specimen can be simulated relaistically. Furthermore, the numerical results show that the crack propagation and final failure mode can be captured with relatively coarse meshes and compares well with the experimental data available.

  • PDF

A Study on the Variation of Magnetic Field Intensity by Ceramics Coating Material in AF Track Circuits (AF궤도회로에서 세라믹 코팅재에 의한 자계의 세기 변화에 대한 연구)

  • Kim, Min-Kyu;Kim, Sun-Dong;Ko, Young-Hwan;Kim, Min-Seok;Lee, Jong-Woo
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1656-1662
    • /
    • 2010
  • Automatic train control systems are divided into ATC, ATP and ATS systems etc. The ATP and ATS systems offer discontinuous information for train control. While the ATC systems provide continueous information for train control. There is a method for offering continuous information by AF track circuits. Magnetic fields are formed by current through rails in the AF track circuit systems. So, the continuous information is received by the magnetic fields on a on-board antenna. Coating materials on rails are researched to decrease defects such as head check, shelling, corrugation, squats and so on in Germany. Currently, a coating method of rail construction is proposed by using the ceramics in Korea. When deciding physical characteristic of ceramics, researches are required about variation of flux density by the ceramics. In case that the flux density is much lower than existing value, the information for train control is not transmitted to the on-board antenna. In this paper, inductance on rails is calculated and a model is presented about variation of the magnetic field intensity in the AF track circuit. Standard permeability of ceramics is proposed by analyzing the variation of magnetic field intensity. It is demonstrated by using Maxwell and Matlab program.

  • PDF

Minimum cost design of overhead crane beam with box section strengthened by CFRP laminates

  • Kovacs, Gyorgy;Farkas, Jozsef
    • Structural Engineering and Mechanics
    • /
    • v.61 no.4
    • /
    • pp.475-481
    • /
    • 2017
  • An overhead travelling crane structure of two doubly symmetric welded box beams is designed for minimum cost. The rails are placed over the inner webs of box beams. The following design constraints are considered: local buckling of web and flange plates, fatigue of the butt K weld under rail and fatigue of fillet welds joining the transverse diaphragms to the box beams, fatigue of CFRP (carbon fibre reinforced plastic) laminate, deflection constraint. For the formulation of constraints the relatively new standard for cranes EN 13001-3-1 (2010) is used. To fulfill the deflection constraint CFRP strengthening should be used. The application of CFRP materials in strengthening of steel and concrete structures are widely used in civil engineering applications due to their unique advantages. In our study, we wanted to show how the mechanical properties of traditional materials can be improved by the application of composite materials and how advanced materials and new production technologies can be applied. In the optimization the following cost parts are considered: material, assembly and welding of the steel structure, material and fabrication cost of CFRP strengthening. The optimization is performed by systematic search using a MathCAD program.

Dynamic Performance of Pedestrian Guardrail System based on 3-D Soil Material Model according to Post Shapes (지주 형상에 따른 3차원 지반재료 모델의 경기장 보행자용 가드레일 동적성능 평가)

  • Yang, Seung-Ho;Lee, Dong-Woo;Shin, Young-Shik
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.2
    • /
    • pp.79-86
    • /
    • 2015
  • This study investigated the embedded depth of guardrail posts through 3-D soil material model and carried out evaluation of the dynamic performance of guard rail. In order to calculate for embedded depth of sloping ground, displacement of guardrail posts is analyzed according to the embedded depth of experiment variables. Through the static test of guardrail posts, the maximum deflection was found to decrease the interval. By performing the dynamic test using the Bogie Car, that is confirmed the elastic modulus of the soil occuring the maximum deflection. Guardrail posts is considered to need for further reinforcement in the larger slope than the plains. This study researched about maximum displacement and deviation velocity through dynamic performance of guardrail system and conducted analysis about protection performance evaluation of passenger.

A Case Study for Deformation of Caisson caused by Friction Shortage (케이슨 하부의 마찰저항 부족에 따른 케이슨 안벽 변위발생 사례연구)

  • Shim, Dong-Hyun;Park, Jun-Ho;Lee, Kyung-Sook
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.325-336
    • /
    • 2008
  • Deformation of caisson occurred during the backfilling behind the caisson and some caisson moved toward seaside. A series of site investigation were conducted to figure out various circumstances at site and also used to analyze the cause of deformation. The soil condition of backfilling is also investigated because dredged material was used as a backfill material. The friction angle of backfill is supposed to be lower than the estimated one which was used in design stage. To determine the cause of friction shortage, back analysis for sliding safety were carried out with considering the soil condition of backfilling. A remedial plan, re-rising and relocating a caisson with backfilling good earth after treatment of caisson rubble mound to achieve the safety for sliding was proposed as a best solution based on the back analysis results. Reform concrete structure including service gallery and crane rail was also considered with the remedial work to improve the cape line of caisson.

  • PDF

Assessment on Mechanical Performance of Porcelain and Glass Insulators by Pendulum Weight (진자 추에 의한 자기 및 유리애자의 기계적 성능 평가)

  • Shong, Kil-Mok;Kim, Jong-Min;Kim, Young-Seok;Bang, Sun-Bae;Kim, Sun-Gu;Jeon, Yong-Joo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.475-476
    • /
    • 2008
  • This paper is an experimental test for the close examination of breakdown causes of glass insulators using at the electric rail-road. The glass insulator is estimated the mechanical performance according to hitting test(ST-100, Sharp-Eng, KOR) that is based on KSC 3810. Insulators is damaged by pendulum weight at the steps of hitting angles. Glass and porcelain insulators are broken at the hitting angle of $72^{\circ}$. From the these results, glass insulator absorbed the impact from the pendulum weight but on the porcelain insulator, it is not transmitted vibration by impact. Hereafter, these results are expected that is used the data for the assessment on breakdown cause of a glass insulator.

  • PDF

Development of an Uplift Measurement System for Overhead Contact Wire using High Speed Camera (고속카메라를 이용한 전차선 압상량 검측 시스템 개발)

  • Park, Young;Cho, Yong-Hyeon;Lee, Ki-Won;Kim, Hyung-Jun;Kim, In-Chol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.10
    • /
    • pp.864-869
    • /
    • 2009
  • The measurement of contact wire uplift in electric railways is one of the most important test parameters to accepting the maximum permitted speed of new electric vehicles and pantographs. The contact wire uplift can be measured over short periods when the pantograph passes monitoring stations. In this paper, a high-speed image measurement system and its image processing method are being developed to evaluate dynamic uplift of overhead contact wires caused by pantograph contact forces of Korea Tilting Train eXpress (TTX) and Korea Train eXpress (KTX). The image measurement system was implemented utilizing a high-speed CMOS (Complementary Metal Oxide Semiconductor) camera and gigabit ethernet LAN. Unlike previous systems, the uplift measurement system using high speed camera is installed on the side of the rail, making maintenance convenient. On-field verification of the uplift measurement system for overhead contact wire using high speed camera was conducted by measuring uplift of the TTX followed by operation speeds at the Honam conventional line and high-speed railway line. The proposed high-speed image measurement system to evaluate dynamic uplift of overhead contact wires shows promising on-field applications for high speed trains such as KTX and TTX.

Analysis for Catenary System with Focus on Abnomal Conditions on Honam High Speed Line (호남고속철도 전차선로의 이상 상태 분석)

  • Jun, Jaegeun;Shin, Seungkwon;Jung, Hosung;Na, Kyungmin;Park, Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.1
    • /
    • pp.1-5
    • /
    • 2019
  • The overhead contact line (OCL) is a key piece of equipment for transmitting electrical energy to the pantograph of rail cars. Recently, a 400 km/h OCL was applied to the Honam high-speed line, and its performance was examined by running HEMU-430X. For the study, we analyzed the current of catenary wire concurrently while running HEMU-430X in the Honam high-speed line. Specifically, this study recorded the currents for each speed during operation of the railway vehicle. The analysis of the frequency of line current showed generation of third-harmonics, 15th-harmonics, 17th-harmonics, and 19th-harmonics. The current of catenary wire is a basic technology assessment used to determine the electrical safety of electric railway systems, and it can be used as a technology for analyzing circulating currents generated in the current configuration, as well as for analyzing electric fatigue of the OCL components.