Modelling of Shear Localisation in Geomaterials
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Abstract

In this paper, an enhanced finite element model based on homogenisation technique is
proposed to capture the localised failure mode of the intact rock masses. For this, bifur-
cation analysis at the element level is performed and, once the bifurcation is detected,
equivalent material properties of the shear band and neighbouring intact rock are used to
trace the post-peak behaviour of the material.

It is demonstrated that mesh sensitivity of the strain softening model is overcome and
progressive failure mode of rock specimen can be simulated realistically. Furthermore, the
numerical results show that the crack propagation and final failure mode can be captured
with relatively coarse meshes and compares well with the experimental data available.
keywords : Shear localisation, Homogenisation technique, Strain-softening, Mesh sensi-

tivity, Equivalent material properties

1. Introduction

Localisation of strains over a narrow region and formation of a shear band prior to col-

lapse have been widely studied in recent years and various approaches and models have
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been proposed to overcome the numerical difficulties encountered with conventional analy-
sis techniques such as finite elements, Here, Cosserat continuum model using additional
rotational degree of freedom(Papanastasiou and Vardoulakis, 1992}, gradient-dependent
model employing higher degree of freedom(Borst and Pamin, 1996), visco-plastic model
with length scale(Loret and Prevost, 1990), non-local model by way of a weighting func-
tion(Borst et al, 1993), enhanced finite element mode! adopting a special shape function
(Steinmann and Willam, 1991), and adaptive mesh refinement technique(Ortiz and Quigley,
1991), among others, are the promising approaches in modelling strain localisation.

The model proposed here is based on a homogenisation of shear band and neighbouring
intact material and can be classified as an enhanced finite element model. It is similar to
the model proposed by Pietruszczak & Mrdz(1981) with conditions of equilibrium as well
as compatibility condition included in it. We do not attempt to analyse the local behaviour
along the shear hand, but try te get the overall deformation pattern and load-deformation
relations. In this sense, we shall try to simulate the experimental data on intact sand-
stone(Ord et al, 1991) utilising a homogenisation technique. The onset of localisation, i.e.
bifurcation point, will be analysed at the element level. However, it is implicitly assumed
here that, if rock masses already contain localised zones in the form of rock joints, the fail-
ure would take place through them.

In the following, the bifurcation theory will be reviewed first. It will include the defi-
nition of the acoustic tensor, critical hardening modulus and the orientation of bifurcation
angle. Next, the homogenisation technique employed right after the bifurcation is
summarised. Numerical examples are given to verify the method utilised in this study.

2. Theoretical Background of Bifurcation Problem

As mentioned in the Introduction, the onset of bifurcation is determined at the(finite}
element level and, at this point, a homogeneous deformation of a body is no longer possible
and non-homogeneous deformation is concentrated on the localised band under the
conditions of continuing equilibrium. The remaining portion of the body is assumed to fol-
low the path of an elastic unloading.

The necessary condition for the bifurcation can be derived by employing the kinematic
constraint and the equilibrium condition, or equivalently jump condition, acress the singu-
lar surface{Rice, 1976)

det(n Dy n) = det(Ajk) =0 (1)
for every unit vector{j.e, orientation of the discontinuous surface) n. Here, D, is the
usual elasto-plastic matrix relating stress increments to strain increments through

g = Dijkié (2)
and A is the acoustic tensor. Eq(1) is equivalent to the loss of ellpticity which is a necess-
ary condition for well-posedness of the boundary value problem. In practice, to find the
value of Eq(l) is not so simple since one usually utilises finite load increment, In two-
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dimensional problems, Eq(1) becomes quartic and the corresponding bifurcation angle can
be found from the minima of the equation.

Critical hardening modulus can be defined as the material characteristics at which bifur-
cation mode is possible, or the uniqueness of response is not guaranteed. The derivation of
the critical hardening modulus is rather tedious and will not be discussed here. When the
Mohr-Coulomb yield criterion is employed, the equation by Mandel{1966) is as follows

G(sing, —siny.)’

H. = ( 8¢(1*v) = 3

where, H,, is a critical hardening modulus, G is a shear modulus, ¢, is a mobilised friction

angle and i, is a mobilised dilatancy angle. It is noted that H. is always positive except
an associated flow rule. Generally speaking, the bifurcation occurs in the hardening regime,
and when the normality rule is valid{i.e,, the associated flow rule), the critical hardening
modulus can never be positive(Rice, 1976).

Inclination angle of the shear band, 8., with respect to the minimum principal stress di-

rection is approximately given by(Vardoulakis, 1980}
0. % 45"+ (4o + ) (4)

It is noted that the angle given in Eq.(4) is the arithmetic average of values given by the
classical Coulomb solution, 0y, and Roscoe’s assumption, #g, i.e.,

Oy = 45°+¢7m (5)
0}{ - 45O+ l‘[j?m

3. Application of Homogenisation Technique to Shear Localisation

Once the bifurcation point is detected, shear bands in the appropriate orientations are
introduced. The domain of homogenisation will be automatically determined by the size of
the finite element. To derive a constitutive relationship of the material having shear band
inside, consider a sample intercepted by a shear band inclined at an angle ¢ having thick-
ness t, length 1 as shown in Fig. 1. Denote a local coordinate system which is parallel to
the shear band as X and a global coordinate system as X. Assuming a plane strain con-
dition for simplicity, the average stress/strain rate components in constituent materials(i.
e., localised interface and nonlocalised material) can be represented by

PR N S U - A (6)
a =1l &l et o &Y = &L e, A (7)
where, indices N and L denote the nonlocalised and localised zone, respectively. Let
homogenised equivalent stress/strain components be represented by

G = 100 Oy Tayy G 3 & = 1&, &, 7y 1| (8)
and these can be defined by the following volume averages

6= 6"t &= b+ é (9)
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Fig.1 Geometry of shear band with adjacent domain

where, volume fraction of localised zone is u. = -li“, that of nonlocalised zone is

v = 1— 1 and A = bh. So far, no limitation is imposed on the shape of the element.

A
Assuming the thickness, t, of the shear band is small compared to the dimension of the
element, the following kinematic constraint and equilibrium condition can be established
E =& =& .6, =06y =a 11 =1 =1} (10)
Since the thickness of the shear band t — 0, the deformation field can be replaced by the

velocity discontinuities, g,

é = {gya éx}T (11)
and the averaging rule in eq{9) can be modified into
[6]1E=[8]+pg (12)
where,
DI cu=tt =+ (13)
0 01

The stress-strain relations for the constituent materials, i.e., localised and non-lecalised

regimes, may be assumed in the following from :
o" =[D]&":é"=[Kjg (14)

where
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The problem formulated above, viz. Egs.(9), (10), (12} and (14), is mathematically deter-
minate. The solution can be conveniently expressed in terms of structural matrices relating
the strain rates in the constituents to those in the homogenised material ;

(616" =[8]¢
Similarly,

g=1[8]¢
where

or e =[8]1¢

[S] = ([1]+%[BJ)" ([AH—},[B}[&J)

1 0 0

(81 = S, Sy S D [8] =
Sp Sy Sau

“Dm Kzl —Dy
[A] = C, uC C

-y - Daz K

{ G, C, ,llcz
K, K

C] == D22+_‘:'1_ CE=D]3+_732—

1 -
u ([6]—-[8])

[B] =

0 K22+#D23
G
K31+‘UD32 0
C,

(15)

(16)

(17)

The constitutive matrix for the homogenised region can be derived directly from the

averaging rule, Eq(9),

6= [D*]¢
where,

[D*] = w [DI[S]+wm([KI[8] = [D][S]
assuming u. — 0. With reference to X — Y coordinate system,

¢g=1[Tle

and

+

E=[T]%

¢ =[TI'[DI[T]E

(18)

(19)

(20)

(21)
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where [ T] and [ T,] are the appropriate transformation matrices.

It should be noted that the mechanical behaviour of the homogenised material does not
depend on the thickness of the shear band which has heen formally eliminated from macro-
scopic considerations. Also, the position of the shear band within the element is not im-
portant since the homogenisation is performed according to the volume fractions of the
constituents.

A shear band is basically an interface, and constitutive relations similar to those used
for rock joints can be similarly applied to the shear band. Therefore, the constitutive

equations of the shear band in the elastic range can have the form

[6]é" =[K]g (22)
with

(K] = | B 0 gt =gt = uet (23)

0 Ks
where Ky and K; are the normal and shear components of the elastic stiffness and
2K,
=1-

o K.

Adopting an elasto-plastic description of the shear band, the yield function and the plas-
tic potential functions are defined as

F = Fl(ay, ., x) = 0:Q = Q(g, ,) = const. (24)
where,
K:K(gv):ge;‘.[a]ﬁf; (25)

and { 8] is defined in Eq. (13). Following the standard plasticity procedure, the constitut-
ive law may be expressed in the form analogous to that of Eq.(23), i.e.

fola=[K"]g (26)
where,
Kll KIZ
[K"] = (27)
KEI KZZ

In the next, Mohr-Coulomb yield criterion with non-associated flow rule, which may be
appropriate to the rock material, will be employed and the following deviatoric
hardening / softening rule similar to Pietruszczak{1992) is considered to model the shear
band behaviour

tang,, = tang, — (tang, —tand,) exp[ —C.g} (gl + C.)] (28)
where, ¢, is the initial friction angle which may be the same as the friction angle of the in-
tact material, ¢, is the residual friction angle which is calculated from

¢-; = Cz¢i (29)
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and ¢. is the mebilised friction angle. C,, C, and C, are material constants. The mobilised
dilatancy angle is similarly defined by using a direct relationship with the material

constants for intact material.

4. Numerical Example

In this Section, numerical studies regarding the shear localisation are illustrated through
the utilisation of the homogenisation technique. Specifically, compression of a rock speci-
men is simulated according to the experimental data given in Ord, et. al. (1991). The ma-
terial properties used in the example are shown in Table 1 and the geometry as well as
boundary conditions are described in Fig. 2. Also shown in Fig. 2 is the constant confining

pressure, q, = 0.015 KPa. The material parameters needed for the modelling of shear band
are the normal as well as shear stiffinesses, Ky & K,, constants for the deviatoric harden-
ing / softening rule, C,, C, & C..

As is well known, when the finite element method is used to analyse the localisation or
the strain softening behaviour, the results are usually mesh dependent. To overcome this
deficiency, several attempts have been made during last decade.

Especially, these attempts tried to employ the idea of the length scale or localisation
limiter. In this study, the shear bands have been smeared or homogenised into the finite
elements and, therefore, the results show the mesh independent behaviour unless very crude

Av.J

- T ) i) | 50
Sron | Platen TR}
+ :
[*H Qs
Rock
H0mm
J

~— 40mm —

Fig.2 Geometry and boundary conditions of example
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Table 1: Material Properties used in Example

Rock specimen B
Dimension W X H 40 x 80mm
Young's modulus E, 12.1 % 10° KPa
Poisson's ratio v 0.31
Cohesion C; 1.0 x 10* KPa
Friction angle #i 44°
Dilatancy angle i 20°
Steel pad
Thickness t, 5.0mm
Young' modulus E. 300x10 *KPa
Poisson’s ratio Ve 0.30
Shear band -
Normal stiffness Ky 1.677 KPa i
mim
Shear stiffness K, 0.460 KPa
mm
Cohesion of shear band C 40 x 10° KPa
Residual dilatancy angle W, 1wy
Material constant C. 1.0Omm
Material constant C, 1.0 x 10 *mm
Material constant C: 0.7

meshes are used. Specifically, 4 finite element mesh designs(66, 153, 231 & 325 elements)
with the same mesh design and with the same material parameters(Table 1) have been
considered to test the mesh dependencies and, except a coarse mesh, the mesh objectivity
is clearly demecnstrated. See Fig. 3. It is noted from Fig. 3 that the peak load is essentially
the same in all cases and, except for the mesh with 66 elements, the overall load-displace-
ment curves show the same patterns. Meanwhile, Fig. 4 illustrates the development of
shear localisation in a mesh with 231 elements and it shows that the localisations start in
the middle of the specimen even though an initial disturbance occurs near the upper left
corner due to biased mesh configuration. The remaining meshes also show the same
localised pattern except coarse mesh(66 elements) and, in this case, the final development
of localisation is expected when the prescribed displacement is further increased.

In the above, the biased meshes as well as steel pad were used to initiate the shear local-
isation. However, if one employs the uniform meshes, the results are significantly different
from the previous ones. For example, up to J§, =0.83mm, symmetric shear localisations are
developed with 210 uniform elements. If the loads are further increased, the deformed shape
will be eventually unsymmetric and localised mode can be realised, mainly due to the nu-
merical round-off errors. A weak element in which the cohesion of intact rock, G, is
reduced by 20%; is then introduced near the upper right boundary of the specimen. As
expected, the shear localisation is initiated from the weak element and propagated down-
ward. The load —displacement curves in these cases are shown in Fig. 5. Also shown is the
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Fig.3 Load —displacement curve with varying number of elements
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Fig.4 Displacement pattern with 23l elements
(a) 8,=0.760mm (b) 8,=0.770mm
(¢} 6,=0.780mm (d) §,=0.830mm
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Fig.5 Load—displacement curve with various mesh designs
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case of biased meshes(23] Elements) for comparison. Up to the peak load, the behaviour of
uniform or weak element meshes is basically the same as biased meshes. However, in the
post -peak region, the softening of the specimen seems to be delayed.

5. Conclusions

In this paper, enhanced finite element model has been proposed to capture the localised
shear band of the geomaterial. The material was initially assumed to be intact and
subsequently discontinuous due to the bifurcation or shear localisation. A homogenisation
technique has been applied after the bifurcation at the integration point, where a weak
(band) material, i.e, a shear crack or an interface, is artificially generated and smeared

over the finite element. Specifically the following conclusions can be made :

e Artificial equivalent material properties are derived on the basis of proposed homogenis-
ation technique. These are used when the stress state at the Gauss point reaches bifur-
. cation point.

e A deviatoric softening rule is employed to model the post-peak behaviour of the shear
band.

¢ Through the parametric studies, it is demonstrated that the results are mesh-indepen-
dent unless, of course, very coarse meshes are used which would naturally give different
results due to crude discretisation.

One of the advantages of the proposed technique studied here is in its simplicity.
Neither additiona! degrees of freedom nor a special shape function is introduced to analyse
the shear localisations. However, it is noted that, to get a good result, very small value of
the convergence tolerance has to be adopted when calculating the norm of the equivalent

nodal forces.
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