• Title/Summary/Keyword: radon gas

Search Result 90, Processing Time 0.024 seconds

Properties Adsorption According to Test Condition of Radon Adsorption-type Matrix (라돈 흡착형 경화체의 시험 조건에 따른 흡착특성)

  • Lim, Hyun-Ung;Kim, Heon-Tae;Gwon, Oh-Han;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.109-110
    • /
    • 2016
  • This study is a absorbing Radon gas to occur indoor or outdoor. As a absorbent Radon gas, making cementless abso rbent matrix that accomplish experiment. In other to accomplish this experiment, Confirming Radon gas release ratio and accurating absorption, reduction of a half-life that 3,8 days from Radon gas source, we need to decide Radon absorbent experiment method. So, we accomplish to find Radon measurement method considering properties and a half-life that 3,8 days from Radon gas source. As the experimental factors, After stabilizing of Radon gas source and so on, we accomplish the experiment that is there or not and seal of Radon source.

  • PDF

The effect of geometrical parameters on the radon emanation coefficient and different radon parameters

  • Entesar H. El-Araby;A. Azazi
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4096-4101
    • /
    • 2023
  • Radon is a radioactive gas produced from the uranium-238 series. Radon gas affects public health and is the second cause of lung cancer. The study samples were collected from one area of the city of Jazan, southwest of the Kingdom of Saudi Arabia. The influence of engineering and physical parameters on the emanation coefficient of gas and other gas parameters was studied. Parameters for radon were measured using a CR-39 Solid-State Nuclear Track Detector (SSNTD) through a sealed emission container. The results showed that the emanation coefficient was affected directly by the change in the grain size of the soil. All parameters of measured radon gas have the same behavior as the emanation coefficient. The relationship between particle size and emanation coefficient showed a good correlation. The values of the emanation coefficient were inversely affected by the mass of the sample, and the rest of the parameters showed an inverse behavior. The results showed that increasing the volume of the container increases the accumulation of radon sons on the wall of the container, which increases the emission factor. The rest of the parameters of radon gas showed an inverse behavior with increasing container size. The results concluded that changing the engineering and physical parameters has a significant impact on both the emanation coefficient and all radon parameters. The emanation coefficient affects the values of the radiation dose of an alpha particle.

A Study on Mitigation Methods of Indoor Radon Concentration in Residential Buildings(I) - Test Cell Study (주거용 건축물의 실내 라돈농도 경감방안에 관한 연구(I) -Test Cell Study)

  • Cha, Dong-Won
    • KIEAE Journal
    • /
    • v.1 no.2
    • /
    • pp.21-28
    • /
    • 2001
  • Naturally-ocurring short-lived decay products of radon gas in indoor air are the dominant source of ionizing radiation exposure to the general public. It is written in BEIR VI Report(l999l the radon progeny were identified as the second cause of lung cancer next to cigarette or 10 % to 14 %(15,400 to 21,800 persons p.a.) of all lung cancer deaths in USA. Indoor radon concentrations in houses typically result from radon gaining access to houses mainly from the underlying soil. In the States, they have "Indoor Radon Abatement Act" which was converted from "Toxic Substance Control Act" in 1988 to establish the national long-term goal that indoor air should be as free of radon as the ambient air outside of buildings. To review and study techniques for controlling radon, two test cells were constructed for a series of tests and are under measuring indoor and soil gas (underneath of floor slab)radon concentrations according to EPA's measurement protocol. In this paper, important theoretical studies are previewed and the following paper will explain the test results and confirm the theories reviewed to find out suitable coefficients. On the basis of test analysis, it will be described and evaluated various techniques that can be used to mitigate elevated indoor concentration of radon including the control of radon and its decay products.

  • PDF

Assessment of radon potential in the areas covered with granite and gneiss in Korea

  • Je Hyun-Kuk;Chon Hyo-Taek
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.501-503
    • /
    • 2003
  • Soil-gas radon level and other atmospheric factors have been measured at residual soil profiles that overlie granite bedrock which consists of major geology in Korea for 6 months from November, 2000 to April, 2001. Seasonal variations of soil-gas radon concentration are generally of greater magnitude than day-to-day fluctuations. The highest radon concentrations of 5,131 pCi/L measured during winter season and the lowest radon concentrations of 107 pCi/L during spring season. Two study areas, Bongcheon-dong(granite bedrock) and Seongnam-Yongin(gneiss bedrock) were investigated to assess the radon potential according to their field survey and emanation tests. The mean values of radon decrease in sequentially from Suji-A(813 pCi/L)>Suji-B(757 pCi/L)>Bundang-B(691 pCi/L)>Bundang-A(643 pCi/L)>Bongcheon-dong(513 pCi/L). Estimated soil-gas radon potential using maximum radon emanation ratios of each study area decreases in the order of Bongcheondong(950 pCi/L)>Suji-B(524 pCi/L)>Bundang-A(437 pCi/)>Bundang-B(259 pCi/L)>Suji-A(230 pCi/L) areas. The values of indoor radon and its daughter product concentrations in Bongcheon-dong area show that indoor basement rooms in poor ventilation condition could be classified as extremely high radon risk location of more than 4 pCi/L Rn and 0.02 WL.

  • PDF

Radon adsorption properties of cement board using anthracite (안트라사이트를 혼입한 시멘트 보드의 라돈흡착 특성)

  • Kyoung, In-Soo;Pyeon, Su-Jeong;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.232-233
    • /
    • 2018
  • Among the recent environmental pollution, indoor air pollution has an adverse effect on the health of indoor residents. Radon, one of the causes of indoor air pollution, is released from concrete, gypsum board and asbestos slate among building materials. Radon is a primary carcinogen and is a colorless, tasteless, odorless inert gas that adheres to airborne dust and enters the body through breathing. At this time, there is a risk of developing cancer if the alpha rays from the lononggas entering the human body destroys the lung tissue and is continuously exposed to a high concentration of lonon gas. The World Health Organization (WHO) has emphasized the reduction of radon and its exposure to radon by classifying it as a first-level carcinogen, but many people have not recognized it yet, and the research is underdeveloped. Therefore, this study was carried out to investigate the properties of adsorbed coconut radon to prevent the inflow of radon gas, which is an air pollution source of indoor air, and to prevent inflow into the human body.

  • PDF

Density and Water Absorption Properties of Matrix Mixing with Powdered Active Carbon according to Binder Type (결합재 종류에 따른 분말활성탄소를 혼입한 경화체의 밀도 및 흡수율 특성)

  • Pyeon, Su-Jeong;Kim, Won-Jong;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.111-112
    • /
    • 2017
  • Radon has been considered the greatest source of exposure within the total radiation exposure of the human body. xposure from radon, which exists in indoor air quality, lacks public perception, Radon, which exists anywhere on earth, is not regarded as a state of attention even if it is above the average level. Indoor radon exposure situations are not intentionally introduced, and essentially the attention and responsibilities of radon exposures are assumed to be in indoor occupants. So, these are caused by common uranium and thorium scattering on Earth, and are brought into the building by fine cracks or exposed indicators of the buildings. Therefore, this study aims to reduce the risk of radon rays and reduce radon, which induces diseases caused by breathing in the body of indoor air pollutants and emitting diseases by emitting alpha rays from the radon gas.

  • PDF

Pore Characterisitics and Adsorption Performance Evaluation of Magnesium Oxide Matrix by Active Carbon Particle Size (활성탄소 입도에 따른 산화마그네슘 경화체의 공극특성과 흡착성능 평가)

  • Pyeon, Su-Jeong;Lee, Sang-Soo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.1
    • /
    • pp.59-65
    • /
    • 2018
  • Radon gas is a colorless, odorless, tasteless gas that occurs when uranium, a natural radioactive material in rocks and soils, collapses. 85% of the annual radiation exposure of the human body is due to natural radiation, of which 50% is radon. According to the US Environmental Protection Agency (EPA) survey, 62 out of 1,000 smokers and 7 out of 1,000 nonsmokers are exposed to lung cancer when exposed to radon gas for a long time. In order to reduce the risk of radon gas, activate carbon was used to fabricate matrix, and the pore properties and radon reduction properties were investigated. When the activate carbon was used, the radon gas concentration was drastically reduced and the graph was changed as the measurement period became longer. The pore distribution and microporous properties, which are one of the material properties of activate carbon, can be grasped.

Indoor Radon Levels in the Room of Kwanak Campus, Seoul National University (서울대학교 관악캠퍼스 지역에서의 실내 라돈농도 분포)

  • Je, Hyun-Kuk;Kang, Chigu;Chon, Hyo-Taek
    • Economic and Environmental Geology
    • /
    • v.31 no.5
    • /
    • pp.425-430
    • /
    • 1998
  • The results of radon $(^{222}Rn)$ concentrations and working levels (WL) for forty rooms in Kwanak Campus, Seoul National University on granite bedrock of Jurassic age showed that radon concentration have mean value of 3.0 pCi/L and 0.011 for working level. A number of rooms where these values exceed the EPA's action level are five (13%). It was also suggested that indoor basement rooms in poor ventilation condition can be classified as extremely high radon risk zone having more than 4 pCi/L and 0.020 WL. It was proved that inflow of soil-gas was a primary factor that governs indoor radon level by comparison of soil-gas radon concentrations with indoor radon concentrations.

  • PDF

Radon Concentration at N-Kindergarten in G-City (G광역시 N유치원의 라돈 농도)

  • Park, Yun;Kim, Wonjun
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.6
    • /
    • pp.421-424
    • /
    • 2015
  • In this study, To subject the constructed at N-kindergarten in G-city, the position is closed window and opened window was measured using a measuring instrument for radon. The measured results indicate that the measurement was carried out in concentrations of radon gas measured at N-kindergarten is low than United States in the radon concentration in air public 4pCi called radon gas baseline maximum allowable concentrations. As a result, radon exposure is not a problem, but when the accumulation radon gas in the lungs, get damaged same lung cancer. Be defensive of kindergarten windows open for ventilation and dust removal be possible to reduce the exposure.

Evaluation of Decreasing Concentration of Radon Gas for Indoor Air Quality with Magnesium Oxide Board using Anthracite (안트라사이트를 활용한 산화마그네슘 보드의 실내 공기질 중 라돈가스 농도 저감 평가)

  • Pyeon, Su-Jeong;Lim, Hyun-Ung;Lee, Sang-Soo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.1
    • /
    • pp.9-15
    • /
    • 2018
  • Radon gas, which is present on the earth, is a primary carcinogen released from rocks, soil, building materials, etc., and exists as a unique gas phase. In order to solve the risk of radon gas, we evaluated the basic performance which can be used as indoor finishing materials in addition to the radon gas reduction properties of the matrix using anthracite. An anthracite used as a conventional filter material was used to produce a matrix, and a test was conducted to replace the gypsum board, which is one of the building materials used in the existing room. As the anthracite replacement ratio increases, flexural failure load strength increases and thermal conductivity tends to decrease. Depending on the thickness of the board, the reduction performance of radon gas shows a slight difference.