DOI QR코드

DOI QR Code

The effect of geometrical parameters on the radon emanation coefficient and different radon parameters

  • Entesar H. El-Araby (Physics Department, Faculty of Science, Jazan University) ;
  • A. Azazi (Physics Department, Faculty of Science, Jazan University)
  • Received : 2023.05.17
  • Accepted : 2023.07.23
  • Published : 2023.11.25

Abstract

Radon is a radioactive gas produced from the uranium-238 series. Radon gas affects public health and is the second cause of lung cancer. The study samples were collected from one area of the city of Jazan, southwest of the Kingdom of Saudi Arabia. The influence of engineering and physical parameters on the emanation coefficient of gas and other gas parameters was studied. Parameters for radon were measured using a CR-39 Solid-State Nuclear Track Detector (SSNTD) through a sealed emission container. The results showed that the emanation coefficient was affected directly by the change in the grain size of the soil. All parameters of measured radon gas have the same behavior as the emanation coefficient. The relationship between particle size and emanation coefficient showed a good correlation. The values of the emanation coefficient were inversely affected by the mass of the sample, and the rest of the parameters showed an inverse behavior. The results showed that increasing the volume of the container increases the accumulation of radon sons on the wall of the container, which increases the emission factor. The rest of the parameters of radon gas showed an inverse behavior with increasing container size. The results concluded that changing the engineering and physical parameters has a significant impact on both the emanation coefficient and all radon parameters. The emanation coefficient affects the values of the radiation dose of an alpha particle.

Keywords

Acknowledgement

The authors extend their appreciation to the deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research work through project number RUP3-4.

References

  1. H.E. Entesar, S.H. Doaa, Y. Zainab, Evaluation of radioactive exposure in soil, Int. J. Radiat. Res. 19 (2021) 719-727. 
  2. H.E. Entesar, Environmental air dosimetry in some locations of gazan using passive track detectors, J. Life Sci. Technol. 1 (2013) 75-78. 
  3. H.E. Entesar, Direct measurement of the radioactive radon gas activity in water in Saudi Arabia, AIP Conf. Proc. 1976 (1) (2018), 020019. 
  4. Entesar H. El-Araby, A.A. El-Barbary, F.M. Tomahy, N.A. Shabir, F.J. Nahari1, Radon investigation and its progeny in ceramic cooking dishes, Int. J. Radiat. Res. 20 (1) (2022) 217-221. 
  5. M. Hosoda, A. Sorimachi, Y. Yasuoka, T. Ishikawa, S.K. Sahoo, M. Furukawa, N. M. Hassan, S. Tokonami, S. Uchida, Simultaneous measurement of radon and thoron exhalation rates and comparison with values calculated by UNSCEAR equation, J. Radiat. Res. 50 (2009) 333-343. 
  6. W.W. Nazaroff, Radon transport from soil to air, Rev. Geophys. 30 (1992) 137-160. 
  7. J. Somlai, Z. Gorjanacz, A. Varhegyi, T. Kovacs, Radon concentration in houses over a closed Hungarian uranium mine, Sci. Total Environ. 367 (2006) 653-665. 
  8. W.W. Nazaroff, B.A. Moed, R.G. Sextro, Soil as a source of indoor radon: generation, migration, and entry, in: W.W. Nazaroff, A.V. Nero (Eds.), Radon and its Decay Products in Indoor Air, JohnWiley & Sons, New York, 1988, pp. 57-112. 
  9. D.J. Greeman, A.W. Rose, Factors controlling the emanation of radon and thoron in soils of the eastern, U. S. A. Chem. Geol. 129 (1996) 1-14. 
  10. D. Breitner, T. Turtiainen, H. Arvela, P. Vesterbacka, B. Johanson, M. Lehtonen, K.- H. Hellmuth, C. Szabo, Multidisciplinary analysis of Finnish esker sediment in radon source identification, Sci. Total Environ. 405 (2008) 129-139. 
  11. A. Sakoda, K. Hanamoto, Y. Ishimori, T. Nagamatsu, K. Yamaoka, Radio- activity and radon emanation fraction of the granites sampled at Misasa and Badgastein, Appl. Radiat. Isot. 66 (2008) 648-652. 
  12. A. Sakoda, K. Hanamoto, Y. Ishimori, T. Kataoka, A. Kawabe, K. Yamaoka, First model of the effect of grain size on radon emanation, Appl. Radiat. Isot. 68 (2010) 1169-1172. 
  13. M. Vital, S. Grondona, N. Dimova, D.E. Martinez, Factors affecting the radon (222Rn) emanation from aquifer rock materials: implications for radiological and groundwater tracer studies, Appl. Radiat. Isot. 189 (2022), 110433. 
  14. R. Stefan, R. Annette, M. Florian, M. Viacheslav, B. Tanita, C. Scott, Evolution of traceable radon emanation sources from MBq to few Bq, Appl. Radiat. Isot. 196 (2023), 110726. 
  15. A. Sakoda, Y. Ishimori, K. Hanamoto, T. Kataoka, A. Kawabe, K. Yamaoka, Experimental and modeling studies of grain size and moisture content effects on radon emanation, Radiat. Meas. 45 (2010) 204-210. 
  16. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), Sources and effects of ionizing radiation, in: UNSCEAR (2000) Report to the General Assembly, with Scientific Annexes, United Nations, New York, 2000. 
  17. T. Sasaki, Y. Gunji, T. Okuda, Radon emanation dependence on grain configuration, J. Nucl. Sci. Technol. 41 (2004) 993-1002. 
  18. T. Sasaki, Y. Gunji, T. Okuda, Mathematical modeling of radon emanation, J. Nucl. Sci. Technol. 41 (2004) 142-151. 
  19. H. Sun, D.J. Furbish, Moisture content effect on radon emanation in porous media, J. Contam. Hydrol. 18 (1995) 239-255. 
  20. R. Barillon, A. Ozgumus, A. Chambaudet, Direct recoil radon emanation from crystalline phases. Influence of moisture content, Geochem. Cosmochim. Acta 69 (2005) 2735-2744. 
  21. A. Sakoda, K. Hanamoto, I. Yuu, K. Takahiro, K. Atsushi, Y. Kiyonori, First model of the effect of grain size on radon emanation, Appl. Radiat. Isot. 68 (2010) 1169-1172.
  22. H.E. Wichmann, J. Heinrich, M. Gerken, M. Kreuzer, J. Wellmann, G. Keller, L. Kreienbrock, Domestic radon and lung cancer current status including new evidence from Germany, Int. Congr. 1225 (2002) 247-252. 
  23. A.F. Saada, R.M. Abdallah, N.A. Hussein, Physical and geometrical parameters controlling measurements of radon emanation and exhalation from soil, Appl. Radiat. Isot. 137 (2018) 273-279. 
  24. IAEA, Measurement of Radionuclides in Food and the Environment 2, A Guidebook, Vienna, 1989, pp. 2-5. Technical Reports Series No. 295, Section. 
  25. Andreea Cristina Tataru, Aurora Stanci, Dorin Tataru, Determination of the radon concentration in homes depending on the insulation used for the floor, MATEC Web Conf. 354 (2022), 00074. 
  26. Nabil M. Hassan, Tetsuo Ishikawa, Masahiro Hosoda, Kazuki Iwaoka, Atsuyuki Sorimachi, Sarata K. Sahoo, Miroslaw Janik, Chutima Kranrod, Hidenori Yonehara, Masahiro Fukushi, Shinji Tokonami, The effect of water content on the radon emanation coefficient for some building materials used in Japan, Radiat. Meas. 46 (2011) 232-237. 
  27. ICRP, International commission on radiological protection statement on radon, in: International Commission on Radiological Protection Statement on Radon, 2009. Ref, 00/902/09. 
  28. ICRP, International commission on radiation units, in: Publication 103 Recommendations of the International Commission on Radiological Protection Annals of the ICRP 37/2-4, 2007.