• 제목/요약/키워드: radiofluorination

검색결과 12건 처리시간 0.016초

Aliphatic radiofluorination using TBAHCO3 eluate in hydrous organic medium

  • Kwon, Young-Do;Son, Jeongmin;Chun, Joong-Hyun
    • 대한방사성의약품학회지
    • /
    • 제4권2호
    • /
    • pp.51-56
    • /
    • 2018
  • Azeotropic drying process is routinely applied to enhance nucleophilicity of $[^{18}F]$fluoride ion during the nucleophilic production of PET radiotracers; however, the drying process requires usually 15-25 min. Due to the high demand of employing fluorine-18 ($t_{1/2}=109.8min$) in PET radiopharmaceutical production, several research groups have focused on the method development, obviating tedious removal process of the residual target water ($[^{18}O]H_2O$) for $[^{18}F]$fluoride ion complex to be used in radiofluorination. Some development in radiofluorination in a mixed organic solvent system was demonstrated with various aliphatic substrates, but only kryptand as a phase transfer agent was utilized in the reported method. Here, we extend to investigate the development scope of applicability with basic alkyl ammonium salt as a phase transfer agent through the extensive elution efficiency study and radiofluorination outcome for aliphatic radiofluorination.

Recent progress in aromatic radiofluorination

  • Kwon, Young-Do;Chun, Joong-Hyun
    • 대한방사성의약품학회지
    • /
    • 제5권2호
    • /
    • pp.145-151
    • /
    • 2019
  • Fluorine-18 is considered to be the radionuclide of choice for positron emission tomography (PET). Thus, the development of small molecule-based radiopharmaceuticals for use in diagnostic imaging relies heavily on efficient radiofluorination techniques. Until the early 2000s, diaryliodonium salts and aryliodonium ylides were widely employed as labeling precursors to yield aromatic PET radiotracers with cyclotron-produced [18F]fluoride ion. Rapid recent progress in the development of efficient borylation methods has led to a paradigm shift in 18F-labeling methods. In addition, deoxyfluorination has attracted a great deal of interest as an alternative approach to aryl ring activation with 18F-. In this review, methods for radiolabel development are discussed with a specific focus on the progress made in the last 5 years. Other interesting 18F-based protocols are also briefly introduced. New methods for exploiting 18F- are expected to increase the number of 18F-labeling methods, to allow applications in a range of chemical environments.

[18F]Aryl fluorides from hypervalent iodine compounds

  • Chun, Joong-Hyun;Son, Jeongmin;Park, Jun Young;Yun, Mijin
    • 대한방사성의약품학회지
    • /
    • 제3권1호
    • /
    • pp.3-14
    • /
    • 2017
  • Nucleophilic aromatic fluorination has been one of the most explored methods in fluorin-18 based radiochemistry. Unlike electrophilic $[^{18}F]$fluorination methods, no-carrier-added nucleophilic radiofluorination with cyclotron-produced $[^{18}F]$fluoride ion offers better specific radioactivity which is essential aspect to obtain good quality images from positron emission tomography. Contrary to amenable aliphatic radiofluorination, the development of reliable aromatic $[^{18}F]$fluorination methods has been pursued by many research groups; however, no viable method has yet been established. Recently, hypervalent iodine compound draws increasing attention as versatile radiolabeling precursor for various $[^{18}F]$fluoroarenes, since it bears the capacity to introduce fluorine-18 either on electron-deficient or electron-rich aryl ring with enhanced regiospecificity. Other classes of hypervalent iodine congeners often utilized in radiochemistry are iodylarenes, iodonium ylides, and spirocyclic iodonium ylides. Recently developed spirocyclic iodonium ylides have already been avidly employed to provide various $[^{18}F]$aryl fluorides with high labeling efficiency. This metal-free protocol would afford efficient routes, replacing the traditional approaches to $[^{18}F]$fluoroarenes, from prosthetic labeling synthons to complex PET radiotracers.

Development of diverse fluorides source for applicable F-18 radiofluorination method

  • Park, Su Hong;Kim, Dong Wook
    • 대한방사성의약품학회지
    • /
    • 제2권1호
    • /
    • pp.17-21
    • /
    • 2016
  • Alkali metal fluoride sources (MFs) such as potassium fluoride (KF) have been widely used as a fluoride source in the nucleophilic displacement reaction. However, they have low solubility and nucleophilicity in most of the organic solvents. Bulky fluoride sources such as tetrabutylammonium fluoride (TBAF) were substituted for MFs to improve these properties. However, hygroscopic property of TBAF makes it less convenient for handling as well as its strong basic property can make the side-reaction occur. Recently, novel fluoride sources have been developed to solve these problems. In this paper, we would like to introduce coordinated fluoride sources as a new fluoride sources such as tetrabutylammonium tetra(t-butyl alcohol)-coordinated fluoride, crown ether metal complex fluoride, and various bulky alcohols coordinated fluoride complexes. In particular, bulky alcohol coordinated fluoride source could generated by the controlled hydrogen-bonded of fluoride with alcohols and these fluoride sources have better stability and reactivity with showing low hygroscopic property. The study of these fluoride sources will help to understand the characteristic of [$^{18}F$]fluoride for increasing the radiochemical yield in the [$^{18}F$]radiofluorination.

Synthesis of [18F]Fluorocholine Analogues as a Potential Imaging Agent for PET Studies

  • Yu, Kook-Hyun;Park, Jeong-Hoon;Yang, Seung-Dae
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권4호
    • /
    • pp.506-510
    • /
    • 2004
  • There have been intensive studies concerning $[^{11}F]$choline ($[^{11}F]$methyldimethyl( ${\beta}$ -hydroxyethyl) ammonium) (1) which is known as a very effective tracer in imaging various human tumors localized in brain, lung, esophagus, rectum, prostate and urinary bladder using Positron Emission Tomography (PET) and there is increasing interest in $^{18}F$ labelled choline (2) and proved to be useful to visualize prostate cancer. We have prepared six $^{18}F$ labelled alkyl choline derivatives (3a-3c, 4a-4c) from ditosylated and dibrominated alkanes in moderate yields. The six alkyl tosylate or bromate ammonium salts have been synthesized as precursors. Radiofluorination was achieved by the treatment of precursors with $^{18}F$ - in the presence of Kryptofix-2.2.2.. The labeling yields varied ranging from 7 to 25%.

Novel organic catalysts for nucleophilic fluorination including F-18 radiofluorination

  • Na, Hyeon Su;Kim, Dong Wook
    • 대한방사성의약품학회지
    • /
    • 제3권2호
    • /
    • pp.116-121
    • /
    • 2017
  • To overcome the low reactivity and solubility of alkali metal fluorides (MFs), various types of phase transfer catalysts (PTCs) have been developed over the last decades. However, since the fluoride activated by such PTC sometimes has a strong basicity, it may cause various side reactions such as elimination reaction or hydroxylation reaction in the nucleophilic fluorination reaction. Also, they may cause separation problems in the compound purification process. In recent advanced study, various PTCs have been developed to solve these problem of conventional catalyst. In this review, we would like to introduce three kinds of novel multifunctional organic catalysts such as bis-tert-alcohol-functionalized crown-6-calix[4]arene (BACCA), easy separable pyrene-tagged ionic liquid (PIL) by reduced graphene oxide (rGO), and tri-tert-butanolamine organic catalyst.

Synthesis of 18F-labeled 2-cyanobenzothiazole derivative for efficient radiolabeling of N-terminal cysteine-bearing biomolecules

  • Jung Eun Park;Jongho Jeon
    • 대한방사성의약품학회지
    • /
    • 제7권2호
    • /
    • pp.153-159
    • /
    • 2021
  • This article provides an efficient 18F-labeling protocol based on a rapid condensation reaction between 2-cyanobenzothiazole (CBT) and N-terminal cysteine-containing biomolecules. The 18F-labeled CBT (18F-1) was prepared by radiofluorination of the tosylated precursor 4 with 18-crown-6/K+/[18F]F- complex. Using the purified 18F-1, 18F-labeled peptide (18F-7) and protein (18F-8) could be synthesized efficiently under mild conditions. This strategy would provide a convenient approach for rapid and site-specific 18F-labeling of various peptides and proteins for in vivo imaging and biomedical applications.

Novel mild fluorination method using light

  • Tien Tan Bui;Hee-Kwon Kim
    • 대한방사성의약품학회지
    • /
    • 제6권2호
    • /
    • pp.131-138
    • /
    • 2020
  • Fluorine compounds have attracted interest of scientists for immense applications in medicinal chemistry and pharmaceuticals. Recently, photoredox catalysts, both organic-based and metal-based compounds, have been employed in organic synthetic methodology to achieve desirable products due to facile operation and mild reaction condition. Various protocols to prepare fluorination adducts in the presence of photoredox catalysts have been developed from several starting materials with formation of radical scaffolds. In this review, we describe recent advances in the fluorination using light.

Organometallic fluorine-18 bonds in 18F-radiochemistry

  • Joong-Hyun Chun;Minju Lee;Sungwon Jun;Jeongmin Son
    • 대한방사성의약품학회지
    • /
    • 제7권1호
    • /
    • pp.22-32
    • /
    • 2021
  • Fluorine-18 is by far the most widely exploited radionuclide in PET (positron emission tomography) radiochemistry. The physical half-life of fluorine-18 allows for chemical manipulation within a restricted timeframe, and cyclotron-produced fluoride ion has been widely applied in aliphatic and aromatic nucleophilic radiofluorinations to produce a variety of established radiotracers. Radiotracers have become more structurally complicated to address diverse targets in physiobiological systems. There is therefore an unmet need to complement traditional C-18F bond-forming radiofluorination with new and efficient radiolabeling techniques to tackle the myriad of possible chemical environments. This review discusses recent advances in organometallic fluorine-18 bond creation in 18F-radiochemistry. Although not widely employed, new radiolabeling strategies for constructing boron-18F, silicon-18F, aluminum-18F, and other metal-18F bonds are described in view of their potential use in the development of novel radiopharmaceuticals.

18F을 표지 암 영상용 클로트리마졸 유도체의 합성 (Synthesis of 18F Labeled Clotrimazole Derivatives as a Potential PET Imaging Agent)

  • 정순재;김인종;박정훈;이흥래;김상욱;허민구;최상무;양승대;유국현
    • 방사선산업학회지
    • /
    • 제4권1호
    • /
    • pp.7-11
    • /
    • 2010
  • Clotrimazole [1-{(2-chlorophenyl)-diphenylmethyl}-1H-imidazole, CLT] has been reported to inhibit the proliferation of vascular endothelial and act as an in vitro anti-VEGF drug. It is also shown to inhibit angiogenesis in an animal model. The radioisotope labeled clotrimazole derivative can be utilized to monitor the physiologic processes of cancer. In this study, we synthesized [$^{18}F$]fluoride labeled clotrimazole derivatives as a new tumor imaging agent for PET. The references were prepared by a refluxing with clotrimazole and an excess of fluoroalkyltosylate in acetonitrile for 36 h and clotrimazole reacted with ditosylalkane to give precursors. [$^{18}F$]Fluoride labeled reaction was performed with precursor in Kryptofix[2.2.2]/$K_2CO_3$ for 10 min at $80^{\circ}C$. The radiolabeling mixture was passed through a silica Sep-Pak cartridge to remove $^{18}F^-$. The [$^{18}F$]F-clotrimazole derivatives were synthesized with a 20~25% yield. In the radiofluorination step, we used acetonitrile and DMSO as a solvent and observed a higher yield at the acetonitrile (25%) reaction compared with the DMSO reaction (5%).