DOI QR코드

DOI QR Code

Recent progress in aromatic radiofluorination

  • Kwon, Young-Do (Department of Nuclear Medicine, Yonsei University College of Medicine) ;
  • Chun, Joong-Hyun (Department of Nuclear Medicine, Yonsei University College of Medicine)
  • Received : 2019.12.04
  • Accepted : 2019.12.28
  • Published : 2019.12.30

Abstract

Fluorine-18 is considered to be the radionuclide of choice for positron emission tomography (PET). Thus, the development of small molecule-based radiopharmaceuticals for use in diagnostic imaging relies heavily on efficient radiofluorination techniques. Until the early 2000s, diaryliodonium salts and aryliodonium ylides were widely employed as labeling precursors to yield aromatic PET radiotracers with cyclotron-produced [18F]fluoride ion. Rapid recent progress in the development of efficient borylation methods has led to a paradigm shift in 18F-labeling methods. In addition, deoxyfluorination has attracted a great deal of interest as an alternative approach to aryl ring activation with 18F-. In this review, methods for radiolabel development are discussed with a specific focus on the progress made in the last 5 years. Other interesting 18F-based protocols are also briefly introduced. New methods for exploiting 18F- are expected to increase the number of 18F-labeling methods, to allow applications in a range of chemical environments.

Keywords

References

  1. Varlow C, Szames D, Dahl K, Bernard-Gauthier V, Vasdev N. Fluorine-18: an untapped resource in inorganic chemistry. Chem Commun 2018;54:11835-11842. https://doi.org/10.1039/C8CC04751K
  2. Szpera R, Moseley DFJ, Smith LB, Sterling AJ, Gouverneur V. The Fluorination of C-H Bonds: Developments and Perspectives. Angew Chem Int Ed 2019;58:14824-14848. https://doi.org/10.1002/anie.201814457
  3. Deng X, Rong J, Wang L, Vasdev N, Zhang L, Josephson L, Liang SH. Chemistry for Positron Emission Tomography: Recent Advances in $^{11}C$-, $^{18}F$-, 1$^{13}N$-, and $^{15}O$-Labeling Reactions. Angew Chem Int Ed 2019;58:2580-2605. https://doi.org/10.1002/anie.201805501
  4. Brooks AF, Topczewski JJ, Ichiishi N, Sanford MS, Scott PJH. Late-stage [$^{18}F$]fluorination: new solutions to old problems. Chem Sci 2014;5:4545-4553. https://doi.org/10.1039/C4SC02099E
  5. Krull J, Heinrich MR. [$^{18}F$]Fluorine-Labeled Pharmaceuticals: Direct Aromatic Fluorination Compared to Multi-Step Strategies. Asian J Org Chem 2019;8:576-590. https://doi.org/10.1002/ajoc.201800494
  6. van der Born D, Pees A, Poot AJ, Orru RVA, Windhorst AD, Vugts DJ. Fluorine-18 labelled building blocks for PET tracer synthesis. Chem Soc Rev 2017;46:4709-4773. https://doi.org/10.1039/C6CS00492J
  7. Kuchar M, Mamat C. Methods to Increase the Metabolic Stability of $^{18}F$-Radiotracers. Molecules 2015;20:16186-16220. https://doi.org/10.3390/molecules200916186
  8. Pike VW, Aigbirhio FI. Reactions of Cyclotron-produced [$^{18}F$]Fluoride with Diaryliodonium Salts-a Novel Singlestep Route to No-carrier-added $[^{18}]Fluoroarenes$. J Chem Soc Chem Commun 1995:2215-2216.
  9. Pike VW. Hypervalent aryliodine compounds as precursors for radiofluorination. J Labelled Compd Radiopharm 2018;61:196-227. https://doi.org/10.1002/jlcr.3570
  10. Preshlock S, Tredwell M, Gouverneur V. $^{18}F$-Labeling of Arenes and Heteroarenes for Applications in Positron Emission Tomography. Chem Rev 2016;116:719-766. https://doi.org/10.1021/acs.chemrev.5b00493
  11. Ichiishi N, Brooks AF, Topczewski JJ, Rodnick ME, Sanford MS, Scott PJH. Copper-Catalyzed [$^{18}F$] Fluorination of (Mesityl)(aryl)iodonium Salts. Org Lett 2014;16:3224-3227. https://doi.org/10.1021/ol501243g
  12. Kwon Y-D, Son J, Chun J-H. Chemoselective Radiosyntheses of Electron-Rich [$^{18}F$]Fluoroarenes from Aryl(2, 4, 6-trimethoxyphenyl)iodonium Tosylates. J Org Chem 2019;84:3678-3686. https://doi.org/10.1021/acs.joc.9b00019
  13. Kwon Y-D, Son J, Chun J-H. Catalyst-Free Aromatic Radiofluorination via Oxidized Iodoarene Precursors. Org Lett 2018;20:7902-7906. https://doi.org/10.1021/acs.orglett.8b03450
  14. Cardinale J, Ermert J, Humpert S, Coenen HH. Iodonium ylides for one-step, no-carrier-added radiofluorination of electron rich arenes, exemplified with 4-(([$^{18}F$] fluorophenoxy)-phenylmethyl)piperidine NET and SERT ligands. RSC Adv 2014;4:17293-17299. https://doi.org/10.1039/C4RA00674G
  15. Rotstein BH, Stephenson NA, Vasdev N, Liang SH. Spirocyclic hypervalent iodine(III)-mediated radiofluorination of non-activated and hindered aromatics. Nat Commun 2014;5;4365. https://doi.org/10.1038/ncomms5365
  16. Stephenson NA, Holland JP, Kassenbrock A, Yokell DL, Livni E, Liang SH, Vasdev N. Iodonium Ylide-Mediated Radiofluorination of $^{18}F$-FPEB and Validation for Human Use. J Nucl Med 2015;56:489-492. https://doi.org/10.2967/jnumed.114.151332
  17. Lim S, Song D, Jeon S, Kim Y, Kim H, Lee S, Cho H, Lee BC, Kim SE, Kim K, Lee E. Cobalt-Catalyzed C-F Bond Borylation of Aryl Fluorides. Org Lett 2018;20:7249-7252. https://doi.org/10.1021/acs.orglett.8b03167
  18. Tredwell M, Preshlock SM, Taylor NJ, Gruber S, Huiban M, Passchier J, Mercier J, Genicot C, Gouverneur V. A General Copper-Mediated Nucleophilic $^{18}F$ Fluorination of Arenes. Angew Chem Int Ed 2014;53:7751-7755. https://doi.org/10.1002/anie.201404436
  19. Mossine AV, Brooks AF, Makaravage KJ, Miller JM, Ichiishi N, Sanford MS, Scott PJH. Synthesis of [$^{18}F$] Arenes via the Copper-Mediated [$^{18}F$]Fluorination of Boronic Acids. Org Lett 2015;17:5780-5783. https://doi.org/10.1021/acs.orglett.5b02875
  20. Makaravage KJ, Brooks AF, Mossine AV, Sanford MS, Scott PJH. Copper-Mediated Radiofluorination of Arylstannanes with [$^{18}F$]KF. Org Lett 2016;18:5440-5443. https://doi.org/10.1021/acs.orglett.6b02911
  21. Neumann CN, Hooker JM, Ritter T. Concerted nucleophilic aromatic substitution with $^{19}F$- and $^{18}F$-. Nature 2016;534:369-373. https://doi.org/10.1038/nature17667
  22. Beyzavi MH, Mandal D, Strebl MG, Neumann CN, D’Amato EM, Chen J, Hooker JM, Ritter T. $^{18}F$-Deoxyfluorination of Phenols via Ru ${\pi}$-Complexes. ACS Cent Sci 2017;3:944-948. https://doi.org/10.1021/acscentsci.7b00195
  23. Strebl MG, Campbell AJ, Zhao W-N, Schroeder FA, Riley MM, Chindavong PS, Morin TM, Haggarty SJ, Wagner FF, Ritter T, Hooker JM. HDAC6 Brain Mapping with [$^{18}F$]Bavarostat Enabled by a Ru-Mediated Deoxyfluorination. ACS Cent Sci 2017;3:1006-1014. https://doi.org/10.1021/acscentsci.7b00274
  24. Rickmeier J, Ritter T. Site-Specific Deoxyfluorination of Small Peptides with [$^{18}F$]Fluoride. Angew Chem Int Ed 2018;57:14207-14211. https://doi.org/10.1002/anie.201807983
  25. Narayanam MK, Ma G, Champagne PA, Houk KN, Murphy JM. Synthesis of [$^{18}F$]Fluoroarenes by Nucleophilic Radiofluorination of N-Arylsydnones. Angew Chem Int Ed 2017;56:13006-13010. https://doi.org/10.1002/anie.201707274
  26. Narayanam MK, Ma G, Champagne PA, Houk KN, Murphy JM. Nucleophilic $^{18}F$-Fluorination of Anilines via N-Arylsydnone Intermediates. Synlett 2018;29:1131-1135. https://doi.org/10.1055/s-0036-1591948
  27. Richard M, Truillet C, Tran VL, Liu H, Porte K, Audisio D, Roche M, Jego B, Cholet S, Fenaille F, Kuhnast B, Taran F, Specklin S. New fluorine-18 pretargeting PET imaging by bioorthogonal chlorosydnone-cycloalkyne click reaction. Chem Commun 2019;55:10400-10403. https://doi.org/10.1039/C9CC05486C
  28. Xiong H, Hoye AT, Fan K-H, Li X, Clemens J, Horchler CL, Lim NC, Attardo G. Facile Route to 2-Fluoropyridines via 2-Pyridyltrialkylammonium Salts Prepared from Pyridine N-Oxides and Application to $^{18}F$-Labeling. Org Lett 2015;17:3726-3729. https://doi.org/10.1021/acs.orglett.5b01703
  29. Brugarolas P, Freifelder R, Cheng S-H, DeJesus O. Synthesis of meta-substituted [$^{18}F$]3-fluoro-4-aminopyridine via direct radiofluorination of pyridine N-oxides. Chem Commun 2016;52:7150-7152. https://doi.org/10.1039/C6CC02362B