• Title/Summary/Keyword: radiation tolerance

Search Result 195, Processing Time 0.032 seconds

The Effect of Gamma Irradiation on the Acid Tolerance and Bile Tolerance of Lactic Acid Bacteria (감마선 조사가 젖산균의 내산성 및 내담즙성에 미치는 영향)

  • Kim, Jae-Kyung;Lee, Ji-hye;Park, Jong-Heum;Song, Beom-Seok;Lee, Ju-Woon;Choi, Jong-Il;Hwang, E-Nam;Kang, Sangmo;Park, Sang-Hyun;Kim, Jae-Hun
    • Journal of Radiation Industry
    • /
    • v.6 no.2
    • /
    • pp.177-180
    • /
    • 2012
  • The acid and bile tolerance changes of 5 different lactic acid bacteria (LAB; Lactobacillus paracasei, Lactobacillus casei, Lactobacillus acidophilus, Lactobacillus plantarum, and Lactobacillus debruekii) with gamma irradiation were evaluated. The abilities of LAB to survive in the acidic conditions at the stomach and the bile acidic conditions at the beginning of the small intestine are the key functions for applying LAB to probiotics. In the results, all of LAB survived more than 50% after incubation in PBS (pH 2.5) for 2 hr, which indicated more than half of LAB are possible to pass through the stomach. However, gamma irradiation decreased the acid tolerances of LAB. The bile tolerances of all bacteria except Lactobacillus acidophilus were observed to survive at a 3% oxgall concentration in MRS, and 1 kGy of gamma irradiation to LAB did not affect any bile tolerances changes. But gamma irradiated Lactobacillus casei and Lactobacillus casei (3 kGy) showed decreasing survival rate with oxgall added MAS agar. In conclusion, gamma irradiation should be applied to yogurt or fermented foods with care because LAB could be changes their properties on acid and bile tolerances.

Development of underwater 3D shape measurement system with improved radiation tolerance

  • Kim, Taewon;Choi, Youngsoo;Ko, Yun-ho
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1189-1198
    • /
    • 2021
  • When performing remote tasks using robots in nuclear power plants, a 3D shape measurement system is advantageous in improving the efficiency of remote operations by easily identifying the current state of the target object for example, size, shape, and distance information. Nuclear power plants have high-radiation and underwater environments therefore the electronic parts that comprise 3D shape measurement systems are prone to degradation and thus cannot be used for a long period of time. Also, given the refraction caused by a medium change in the underwater environment, optical design constraints and calibration methods for them are required. The present study proposed a method for developing an underwater 3D shape measurement system with improved radiation tolerance, which is composed of commercial electric parts and a stereo camera while being capable of easily and readily correcting underwater refraction. In an effort to improve its radiation tolerance, the number of parts that are exposed to a radiation environment was minimized to include only necessary components, such as a line beam laser, a motor to rotate the line beam laser, and a stereo camera. Given that a signal processing circuit and control circuit of the camera is susceptible to radiation, an image sensor and lens of the camera were separated from its main body to improve radiation tolerance. The prototype developed in the present study was made of commercial electric parts, and thus it was possible to improve the overall radiation tolerance at a relatively low cost. Also, it was easy to manufacture because there are few constraints for optical design.

Radiation tolerance of a small COTS single board computer for mobile robots

  • West, Andrew;Knapp, Jordan;Lennox, Barry;Walters, Steve;Watts, Stephen
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2198-2203
    • /
    • 2022
  • As robotics become more sophisticated, there are a growing number of generic systems being used for routine tasks in nuclear environments to reduce risk to radiation workers. The nuclear sector has called for more commercial-off-the-shelf (COTS) devices and components to be used in preference to nuclear specific hardware, enabling robotic operations to become more affordable, reliable, and abundant. To ensure reliable operation in nuclear environments, particularly in high-gamma facilities, it is important to quantify the tolerance of electronic systems to ionizing radiation. To deliver their full potential to end-users, mobile robots require sophisticated autonomous behaviors and sensing, which requires significant computational power. A popular choice of computing system, used in low-cost mobile robots for nuclear environments, is the UP Core single board computer. This work presents estimates of the total ionizing dose that the UP Core running the Robot Operating System (ROS) can withstand, through gamma irradiation testing using a Co-60 source. The units were found to fail on average after 111.1 ± 5.5 Gy, due to faults in the on-board power management circuitry. Its small size and reasonable radiation tolerance make it a suitable candidate for robots in nuclear environments, with scope to use shielding to enhance operational lifetime.

Customer Acceptance Procedure for Clinac (21EX-Platinum)

  • Hong, Dong-Ki;Lee, Woo-Seok;Kwon, Kyung-Tae;Park, Kwang-Ho;Kim, Chung-Man
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.16 no.2
    • /
    • pp.43-61
    • /
    • 2004
  • Purpose : For qualify improvement in radiotherapy, it is important to set up and evaluate equipment (linac) accurately. In addition, technicians are needed to be fully aware of the equipment's detailed quality and its manual. Therefore, the result of ATP is evaluated and introduced, in order that the technicians are skilled by participating in quality assurance (QA) and understanding the quality of the equipment before clinical use. Method and Material : QA for LINAC 21EX (Varian, US) was done with suppliers its procedure was divided into radiation survey, mechanical test, radiation isocenter test, bean performance, dosimetry, and enhanced dynamic wedge and using X-omat film (Kodak), multidata, densitometer, and electrometer. QA of MLC (Millennium, 120 leaf) attached to LINAC and EPID (Portal vision) were done separately. Result : The leakage dose by survey meter was below the tolerance. In mechanical test, collimater, gantry, and couch rotation were less than 1mm, and the angles were ${\pm}0.1^{\circ}$ for digital and ${\pm}0.5^{\circ}$ for mechanical. The alignment test of the light field and crosshair were evaluated less than 1mm. The (a)symmetrical jaw field was less than ${\pm}0.5mm$. The radiation isocenter test using X-mat film was less than 1mm. The consistency of light field and radiation field was less than ${\pm}0.1mm$. PDD for photon energy was less than ${\pm}1\%$ and for electron energy of $90\%,\;80\%,\;50\%,\;and\;30\%$ were evaluated within the tolerance. Flatness for photon and electron energy was evaluated $2.3\%$ (tolerance $3\%$) and $3\%$ (tolerance $4.5\%$), respectively, and symmetry was $0.45\%$ (tolerance $2\%$) and $0.3\%$ (tolerance $2\%$), respectively. Dosimetry test for short term, MU setting, rep rate, and dose rate accuracy of photon and electron energy was within the tolerance depending on energy, MU, and gantry angle. Conclusion : Accuracy and safety for clinical use of Clinac 21EX was verified through customer acceptance procedure and the quality of the equipment was found out. These can reduce the difficulties in using the equipment. Furthermore, it is useful for clinically treatment of patients by technicians' active participations.

  • PDF

Selection and Characterization of Tomato Plants for Osmotic Stress Tolerance Derived from a Gamma Ray Irradiation (감마선 돌연변이원에 의한 Osmotic 스트레스 저항성 토마토 계통 선발 및 특성)

  • Kang, Kwon Kyoo;Jung, Yu Jin
    • Journal of Radiation Industry
    • /
    • v.4 no.3
    • /
    • pp.247-252
    • /
    • 2010
  • The present study has been performed to select the osmotic tolerant lines using polyethylene glycol (PEG 6000) through an in vitro and in vivo mutagensis with a gamma-ray. During the screening, we selected three mutant lines that seemed to confer elevated osmotic tolerance in high concentrations of PEG 6000. Fruits of these mutants (Os-HK101, Os-HK102 and Os-HK103) were increased to sugar concentration, L-glutamine acid, vitamin C content and lycopine content than those of the wild type. Also the chlorophyll contents were few decreased more in the three mutant lines than the WT plants. Our results suggest that the Os-HK101 is characterized as osmotic stress tolerance considering the sugar concentration and lycopine content. It is expected that the result of this study can be used for breeding more competitive species with respect to contents in sugar or functional chemicals from the selected osmotic resistant lines.

Esophageal tolerance to high-dose stereotactic radiosurgery

  • Lee, Bo Mi;Chang, Sei Kyung;Ko, Seung Young;Yoo, Seung Hoon;Shin, Hyun Soo
    • Radiation Oncology Journal
    • /
    • v.31 no.4
    • /
    • pp.234-238
    • /
    • 2013
  • Purpose: Esophageal tolerance is needed to guide the safe administration of stereotactic radiosurgery (SRS). We evaluated comprehensive dose-volume parameters of acute esophageal toxicity in patients with spinal metastasis treated with SRS. Materials and Methods: From May 2008 to May 2011, 30 cases in 27 patients with spinal metastasis received single fraction SRS to targets neighboring esophagus. Endpoints evaluated include length (mm), volume (mL), maximal dose (Gy), and series of dose-volume thresholds from the dose-volume histogram (volume of the organ treated beyond a threshold dose). Results: The median time from the start of irradiation to development of esophageal toxicity was 2 weeks (range, 1 to 12 weeks). Six events of grade 1 esophageal toxicity occurred. No grade 2 or higher events were observed. $V_{15}$ of external surface of esophagus was found to predict acute esophageal toxicity revealed by multivariate analysis (odds radio = 1.272, p = 0.047). Conclusion: In patients with spinal metastasis who received SRS for palliation of symptoms, the threshold dose-volume parameter associated with acute esophageal toxicity was found to be $V_{15}$ of external surface of esophagus. Restrict $V_{15}$ to external surface of esophagus as low as possible might be safe and feasible in radiosurgery.

Evaluation of Salt Tolerance in Sorghum (Sorghum bicolor L.) Mutant Population

  • Ye-Jin Lee;Baul Yang;Woon Ji Kim;Juyoung Kim;Soon-Jae Kwon;Jae Hoon Kim;Joon-Woo Ahn;Sang Hoon Kim;Haeng-Hoon Kim;Chang-Hyu Bae;Jaihyunk Ryu
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2023.04a
    • /
    • pp.38-38
    • /
    • 2023
  • Sorghum (Sorghum bicolor L.) is a promising biomass crop with a high lignocellulose content. This study aimed to select high salt-tolerance sorghum lines for cultivation on reclaimed land. Using 7-day seedlings of the sorghum population consisted of 71 radiation-derived mutants (M2 to M6) and 33 genetic resources, survival rate (SR), plant height (PH), root length (RL), fresh weight (FW), and chlorophyll content (CC) were measured for two weeks after 102 mM (0.6%) NaCl treatment. Furthermore, the characteristics of the sorghum population were confirmed using correlation analysis, PCA (principal component analysis), and the FCE (fuzzy comprehensive evaluation) method. Under 102 mM NaCl conditions, SR ranged from 4.9 (IS645-200-6) to 82.4% (KLSo79125-200-1), with an average of 49.9%. PH varied from 7.5 (Mesusu-100-2) to 33.2 cm (DINE-A-MITE-100-2-10), with an average of 20.4 cm. RL ranged from 1.0 (IS645-200-1) to 17.0 cm (30-100-2), with an average of 7.7 cm. FW varied from 0.1 (IS645-200-6) to 4.5 g/plant (DINE-A-MITE-100-2-10), with an average of 2.1 g/plant. CC ranged from 0.9 (DINE-A-MITE-100-2-2) to 3.1 mg/g (IS12937), with an average of 1.7 mg/g. An overall positive correlation, with SR and FW (r = 0.86, P < 0.01), and FW and CC (r = 0.79, P < 0.01), was shown by correlation analysis. Among the five traits, two principal components were extracted by PCA analysis. PC1 was significantly associated with FW, while PC2 was highly involved with RL. To evaluate the salt tolerance level of the sorghum population when an FCE based on trait data was performed, MFV (membership function value) was 0.68. As a result of compiling the MFV of each line, eight lines with MFV > 0.68 were selected. Ultimately, the radiation-derived mutant lines, DINE-A-MITE-100-2-10 and DINE-A-MITE-100-2-12 were selected as salt-tolerant sorghum lines. The results are expected to inform salt-tolerant sorghum breeding programs, and the high salt-tolerance sorghum lines might be advantageous for cultivation on reclaimed land.

  • PDF

Linkage Between Brown Planthopper Resistance Gene and Salt Tolerance in Rice (벼멸구 저항성 유전자와 내염성과의 연관)

  • Yang Dae Hwa;Kim Jin-Hong;Wi Seung Gon;Baek Myung-Hwa;Lim Sang Yong;Lee In Sok;Lee Kyu-Seong;Lee Myung Chul;Lim Yong-Pyo;Chung Byung Yeoup;Kim Jae-Sung
    • Journal of Life Science
    • /
    • v.15 no.1 s.68
    • /
    • pp.61-65
    • /
    • 2005
  • Using two japonica rice cultivars (Ilpumbyeo and Sanghaehyanghyella), which are distinguishable by the brown planthopper (BHP) resistance maker (R208), a relationship between the BPH resistance gene (Os-Bil) and salt-tolerance was investigated. To do this, changes in the expression level of Os-Bil by the salt stress were quantified by the real-time PCR in the two cultivars, and compared with those in other two indica rice cultivars (Pokkali and IR29). In Ilpumbyeo, the expression level of Os-Bil decreased by the treatments of 50 and 200 mM NaCl in a concentration-dependent manner, and in Sanghaehyanghyella it rather increased slightly at 50 mM but decreased drastically at 200 mM. Comparably, IR29, a salt-sensitive cultivar, showed a reduction of the Os-Bil gene expression after the treatment of 100 mM NaCl, but Pokkali, a salt-tolerance cultivar, rather increased about two times in the level of Os-Bil transcripts. These results suggest that the BPH resistance gene may involve in the difference in the salt-tolerance at least between the two indica rice cultivars.

Parental inheritance of heat stress tolerance during grain filling period in wheat

  • Ko, Chan Seop;Ou, Meong Kyu;Hyun, Jong Nae;Kim, Kyung Hun;Kim, Jin Baek;Hong, Min Jeong;Seo, Yong Weon
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.142-142
    • /
    • 2017
  • Wheat (Triticum asetivum L.) is one of the major grain crops worldwide. The reduced productivity ascribed by adverse environment is increasing the risk of food security. Wheat cultivars have been actively released by public side since 1960s in Korea. Each variety has been developed for superior regional adaptation, pest resistance and mostly high yield. Heat stress tolerance is one of the major parameters that threaten wheat production in Korea. Heat stress during grain filling period has been conceived as critical level and directly influences on wheat production. We evaluated 11 common wheat cultivars ("Baegjoong", "Dajung", "Goso", "Hanbaek", "Jokyoung", "Joeun", "Jopum", "Keumgang", "Olgeuru", "Sinmichal", "Uri") that were exposed to abnormally high temperature during the grain filling period. Each plant was grown well in a pot containing "Sunshine #4" soil in controlled phytotron facility set on $20^{\circ}C$ and 16 h photoperiod. At 9 day-after-anthesis (DAA9), plants were subjected to a gradual increase in temperature from $20^{\circ}C$ to $33^{\circ}C$ and maintained constantly at $33^{\circ}C$ for 5 days. After the treatment, plants were subjected to gradual decrease to normal temperature ($20^{\circ}C$) and continue to grow till harvest. Seeds were harvested from each tiller/plant. Total chlorophyll contents decrease level as well as grain parameters were measured to evaluate varietal tolerance to heat stress. We also divide each spike into five regions and evaluate grain characteristics among the regions in each spike. The obtained results allow us to classify cultivars for heat stress tolerance. The pedigree information showed that typical wheat lines provide either tolerance or susceptible trait to their off-springs, which enable breeders to develop heat stress tolerance wheat by appropriate parental choice.

  • PDF

Recent Advances in Radiation-Hardened Sensor Readout Integrated Circuits

  • Um, Minseong;Ro, Duckhoon;Kang, Myounggon;Chang, Ik Joon;Lee, Hyung-Min
    • Journal of Semiconductor Engineering
    • /
    • v.1 no.3
    • /
    • pp.81-87
    • /
    • 2020
  • An instrumentation amplifier (IA) and an analog-to-digital converter (ADC) are essential circuit blocks for accurate and robust sensor readout systems. This paper introduces recent advances in radiation-hardening by design (RHBD) techniques applied for the sensor readout integrated circuits (IC), e.g., the three-op-amp IA and the successive-approximation register (SAR) ADC, operating against total ionizing dose (TID) and singe event effect (SEE) in harsh radiation environments. The radiation-hardened IA utilized TID monitoring and adaptive reference control to compensate for transistor parameter variations due to radiation effects. The radiation-hardened SAR ADC adopts delay-based double-feedback flip-flops to prevent soft errors which flips the data bits. Radiation-hardened IA and ADC were verified through compact model simulation, and fabricated CMOS chips were measured in radiation facilities to confirm their radiation tolerance.