• 제목/요약/키워드: radiation sources

검색결과 599건 처리시간 0.029초

Impact of aperture-thickness on the real-time imaging characteristics of coded-aperture gamma cameras

  • Park, Seoryeong;Boo, Jiwhan;Hammig, Mark;Jeong, Manhee
    • Nuclear Engineering and Technology
    • /
    • 제53권4호
    • /
    • pp.1266-1276
    • /
    • 2021
  • The mask parameters of a coded aperture are critical design features when optimizing the performance of a gamma-ray camera. In this paper, experiments and Monte Carlo simulations were performed to derive the minimum detectable activity (MDA) when one seeks a real-time imaging capability. First, the impact of the thickness of the modified uniformly redundant array (MURA) mask on the image quality is quantified, and the imaging of point, line, and surface radiation sources is demonstrated using both cross-correlation (CC) and maximum likelihood expectation maximization (MLEM) methods. Second, the minimum detectable activity is also derived for real-time imaging by altering the factors used in the image quality assessment, consisting of the peak-to-noise ratio (PSNR), the normalized mean square error (NMSE), the spatial resolution (full width at half maximum; FWHM), and the structural similarity (SSIM), all evaluated as a function of energy and mask thickness. Sufficiently sharp images were reconstructed when the mask thickness was approximately 2 cm for a source energy between 30 keV and 1.5 MeV and the minimum detectable activity for real-time imaging was 23.7 MBq at 1 m distance for a 1 s collection time.

식품의 품질 및 안전 관리를 위한 테라헤르츠 분광/영상 기술의 응용 (Application of terahertz spectroscopy/imaging technology for food quality and safety management)

  • 이상유;우소영;전향숙
    • 식품과학과 산업
    • /
    • 제51권1호
    • /
    • pp.26-36
    • /
    • 2018
  • Terahertz (THz) represents the portion of the electromagnetic radiation between the microwave and the infrared region and is within the frequency range of 0.1-10 THz. The ability of THz waves to pass through a wide variety of packaging materials, combined with their ability to characterize the molecular structure of many substances makes it an attractive tool for the application of food quality and safety management. This review provides current information on application of THz spectroscopy/imaging technology for food quality and safety management. The THz spectroscopy/imaging technology has been shown to be useful for detecting foreign bodies, vitamin/moisture, pesticides, antibiotics, melamine etc. However, major barriers to the adoption of THz spectroscopy/imaging for food quality and safety management include THz signal loss in heterogeneous food matrices, high costs of sources and detectors, and absence of a library for the wide group of food compounds. Further research is needed to overcome these barriers.

Development of an energy and efficiency calibration method for stilbene scintillators

  • Kim, Chanho;Kim, Jaehyo;Hong, Wooseong;Yeom, Jung-Yeol;Kim, Geehyun
    • Nuclear Engineering and Technology
    • /
    • 제54권10호
    • /
    • pp.3833-3840
    • /
    • 2022
  • A method for calibrating the energy scale and detection efficiency of stilbene scintillators is presented herein. This method can be used to quantitatively analyze the Compton continuum of gamma-ray spectra obtained using such scintillators. First, channel-energy calibration was conducted by fitting a semi-empirical equation for the Compton continuum to the acquired energy spectrum and a new method to evaluate the intrinsic detection efficiency, called intrinsic Compton efficiency, of stilbene scintillators was proposed. The validity of this method was verified by changing experimental conditions such as the number of sources being measured simultaneously and the detector-source distance. According to the energy calibration, the standard error for the estimated Compton edge position was ±1.56 keV. The comparison of the intrinsic Compton efficiencies calculated from the single- and two-source spectra showed that the mean absolute difference and the mean absolute percentage difference are 0.031 %p and 0.557%, respectively, demonstrating reasonable accuracy of this method. The feasibility of the method was confirmed for an energy range of 0.5-1.5 MeV, showing that stilbene scintillators can be used to quantitatively analyze gamma rays in mixed-radiation fields.

Development of a truncation artifact reduction method in stationary inverse-geometry X-ray laminography for non-destructive testing

  • Kim, Burnyoung;Yim, Dobin;Lee, Seungwan
    • Nuclear Engineering and Technology
    • /
    • 제53권5호
    • /
    • pp.1626-1633
    • /
    • 2021
  • In an industrial field, non-destructive testing (NDT) is commonly used to inspect industrial products. Among NDT methods using radiation sources, X-ray laminography has several advantages, such as high depth resolution and low computational costs. Moreover, an X-ray laminography system with stationary source array and compact detector is able to reduce mechanical motion artifacts and improve inspection efficiency. However, this system, called stationary inverse-geometry X-ray laminography (s-IGXL), causes truncation artifacts in reconstructed images due to limited fields-of-view (FOVs). In this study, we proposed a projection data correction (PDC) method to reduce the truncation artifacts arisen in s-IGXL images, and the performance of the proposed method was evaluated with the different number of focal spots in terms of quantitative accuracy. Comparing with conventional techniques, the PDC method showed superior performance in reducing truncation artifacts and improved the quantitative accuracy of s-IGXL images for all the number of focal spots. In conclusion, the PDC method can improve the accuracy of s-IGXL images and allow precise NDT measurements.

SCALE-ORIGEN-ARP를 이용한 사용후핵연료 내 중성자 및 감마선원 분석 (An analysis of neutron sources and gamma-ray in spent fuels using SCALE-ORIGEN-ARP)

  • 차소희;박광헌
    • 한국표면공학회지
    • /
    • 제56권1호
    • /
    • pp.84-93
    • /
    • 2023
  • The spent nuclear fuel is burned during the planned cycle in the plant and then generates elements such as actinide series, fission products, and plutonium with a long half-life. An 'interim storage' step is needed to manage the high radioactivity and heat emitted by nuclides until permanent-disposal. In the case of Korea, there is no space to dispose of high-level radioactive waste after use, so there is a need for a period of time using interim storage. Therefore, the intensity of neutrons and gamma-ray must be determined to ensure the integrity of spent nuclear fuel during interim storage. In particular, the most important thing in spent nuclear fuel is burnup evaluation, estimation of the source term of neutrons and gamma-ray is regarded as a reference measurement of the burnup evaluation. In this study, an analysis of spent nuclear fuel was conducted by setting up a virtual fuel burnup case based on CE16×16 fuel to check the total amount and spectrum of neutron, gamma radiation produced. The correlation between BU (burnup), IE (enrichment), and CT (cooling time) will be identified through spent nuclear fuel burnup calculation. In addition, the composition of nuclide inventory, actinide and fission products can be identified.

Planning and decommissioning of a disused Theratron- 780 teletherapy machine and the dose assessment methodology for normal and radiological emergency conditions

  • Mohamed M.Elsayed Breky ;Muhammad S. Mansy;A.A. El-Sadek ;Yousif M. Mousa ;Yasser T. Mohamed
    • Nuclear Engineering and Technology
    • /
    • 제55권1호
    • /
    • pp.238-247
    • /
    • 2023
  • The present work represents a technical guideline for decommissioning a disused teletherapy machine model Theratron-780 and contains category one 60Co radioactive source. The first section predicts the dose rate from the source in case of normal and radiological emergency situations via FLUKA-MC simulation code. Moreover, the dose assessment for the occupational during the whole process is calculated and compared to the measured values. A suggested cordoned area for safety and security in a radiological emergency is simulated. The second section lists the whole process's technical procedures, including (preview, dismantle, securing, transport and storage) of the disused teletherapy machine. Results show that the maximum obtained accumulated dose for occupational were found to be 24.5 ± 4.9 μSv in the dismantle and securing process in addition to 3.5 ± 1.8 μSv during loading on the transport vehicle and unloading at the storage facility. It was found that the measured accumulated dose for workers is in good agreement with the estimated one by uncertainty not exceeding 5% in normal operating conditions.

The Development of an Intelligent Home Energy Management System Integrated with a Vehicle-to-Home Unit using a Reinforcement Learning Approach

  • Ohoud Almughram;Sami Ben Slama;Bassam Zafar
    • International Journal of Computer Science & Network Security
    • /
    • 제24권4호
    • /
    • pp.87-106
    • /
    • 2024
  • Vehicle-to-Home (V2H) and Home Centralized Photovoltaic (HCPV) systems can address various energy storage issues and enhance demand response programs. Renewable energy, such as solar energy and wind turbines, address the energy gap. However, no energy management system is currently available to regulate the uncertainty of renewable energy sources, electric vehicles, and appliance consumption within a smart microgrid. Therefore, this study investigated the impact of solar photovoltaic (PV) panels, electric vehicles, and Micro-Grid (MG) storage on maximum solar radiation hours. Several Deep Learning (DL) algorithms were applied to account for the uncertainty. Moreover, a Reinforcement Learning HCPV (RL-HCPV) algorithm was created for efficient real-time energy scheduling decisions. The proposed algorithm managed the energy demand between PV solar energy generation and vehicle energy storage. RL-HCPV was modeled according to several constraints to meet household electricity demands in sunny and cloudy weather. Simulations demonstrated how the proposed RL-HCPV system could efficiently handle the demand response and how V2H can help to smooth the appliance load profile and reduce power consumption costs with sustainable power generation. The results demonstrated the advantages of utilizing RL and V2H as potential storage technology for smart buildings.

Methodology to Link the Results of Radiological Characterizations of Decommissioning Nuclear Power Plants

  • Jaeok Park;Tae Young Kong;Seongjun Kim;Jinho Son;Changju Song;Jiung Kim;Seungho Jo;Hee Geun Kim
    • 방사성폐기물학회지
    • /
    • 제22권3호
    • /
    • pp.363-376
    • /
    • 2024
  • Kori Unit 1, the first commercial nuclear power plant (NPP) in Korea, was permanently shut down in 2017 and was scheduled for decommissioning. Various programs must be planned early in the decommissioning process to safely decommission NPPs. Radiological characterization is a key program in decommissioning and should be a high priority. Radiological characterization involves determining the decommissioning technology to be applied to a nuclear facility by identifying the radiation sources and radioactive contaminants present within the facility and assessing the extent and nature of the radioactive contaminants to be removed from the facility. This study introduces the regulatory requirements, procedures, and implementation methods for radiological characterization and proposes a methodology to link the results of radiological characterizations for each stage. To link radiological characteristics, this study proposes to conduct radiological characterization in the decommissioning phase to verify the results of radiological characterization in the transitional phase of decommissioning NPPs. This enables significantly reducing the scope and content of radiological characterization that must be performed in the decommissioning phase and maintaining the connection with the previous phase.

정위방사선치료 시 적분 생물학적 유효선량 및 방사선조사용적을 이용한 Total Arc Degree의 최적화 (Optimization of Total Arc Degree for Stereotactic Radiotherapy by Using Integral Biologically Effective Dose and Irradiated Volume)

  • 임도훈;이명자;전하정;김대용
    • Radiation Oncology Journal
    • /
    • 제19권2호
    • /
    • pp.199-204
    • /
    • 2001
  • 목적 : 정위방사선치료 시 정상 뇌 조직을 고선량의 방사선으로부터 최대한 보호하며 치료의 효율성을 높이기 위하여 치료 인자 중 콜리메이터의 크기와 arc 간 간격에 따른 이상적인 total arc degree (TAD) 값을 제시하고자 한다. 대상 및 방법 : XKnife-3 planning system을 사용하여 환자의 송과체 부위에 방사선 빔의 회전중심점을 위치시킨 후 12, 20, 30, 40, 50 그리고 60 mm 직경의 정위방사선치료용 원형 콜리메이터를 이용하여 각각의 콜리메이터 직경별로 TAD를 100, 200, 300, 400, 500, 600도, 그리고 arc 간 간격을 30도(6-arc system)와 45도(4-arc system)로 설정하여 방사선치료계획을 수립하였다. 치료계획을 통해 얻은 누적선량체적히스토그람을 이용하여 회전중심점 처방선량의 $50\%$ 이상 조사되는 정상 뇌의 용적$(V_{50})$ 및 적분 생물학적 유효선량(integral biologically effective dose)을 이용하여 각각의 TAD에 따른 방사선치료계획을 비교하였다. 결과 : TAD에 따른 $V_{50}$의 변화는 arc 간 각도가 30도인 경우에는 콜리메이터 직경과 관계없이 TAD가 증가할수록 감소하는 양상을 보였으나, 45도의 arc 간 각도에서는 400도의 TAD까지는 감소하다가 400도 이상의 TAD에서 $V_{50}$은 증가하거나 변화가 없었다. 적분 생물학적 유효선량 값의 변화는 arc 간 간격이 30도인 경우에는 콜리메이터의 직경에 관계없이 TAD가 증가함에 따라 미소하게 감소하는 양상을 보였다. arc 간 각도가 45도인 경우에는 콜리메이터 직경이 40 mm 이하에서는 TAD가 증가함에 따라 적분 생물학적 유효선량은 계속 감소하였으나, 50 mm와 60 mm 직경의 콜리메이터에서는 TAD가 400도까지는 감소하다가 500도 이상의 TAD에서는 증가하였다. 결론 : 정위방사선치료 시 400도 정도의 TAD를 사용하는 것은 300도 이하 혹은 500도 이상의 TAD를 사용하는 것 보다 치료 효과를 높이면서 치료계획과 치료 시 장비 및 인적 자원의 효율적인 운용을 기대할 수 있을 것으로 판단된다.

  • PDF

자궁경부 선암 환자에 대한 생존율과 실패양상 분석 (The Results of Radiation Therapv for Adenocarcinoma of the Uterine Cervix)

  • 이호준;김진희;김옥배
    • Radiation Oncology Journal
    • /
    • 제17권1호
    • /
    • pp.16-22
    • /
    • 1999
  • 목적 : 자궁경부암 환자들 중 병리조직학적으로 선암으로 확인된 환자들을 대상으로 생존율과 실패양상에 영향을 주는 인자들을 분석하기 위해서 본 연구를 하였다. 대상 및 방법 : 1988년 6월부터 1996년 12월까지 계명대학교 동산의료원 치료방사선과에서 방사선치료를 받은 자궁경부암 환자들중 선암환자 45명을 대상으로 하였다. 병기는 FIGO분류상 Ib가 12례, IIa가 9례, IIb가 19례, IIIb가 5례 이었으며, 환자들의 연령은 중앙값이 54세이었다 체외 방사선치료는 주로 골반부위만을 치료하였으며, 복부 대동맥 림프절(Paraaortic node; PAN)에 대한 예방적 방사선치료를 6례에서 시행하였는데, 1례를 제외하고 나머지 5례의 환자가 모두 골반 컴퓨터 단층촬영 사진에서 골반 림프절 전이가 있었기 때문에 예방적 치료를 하였다. 체외 방사선치료후 모든 환자가 강내 방사선치료를 받았다. 방사선치료전 항암화학요법을 받은 환자가 16례이었다. 중앙 및 최대추적기간은 각각 64개월, 116개월이었다. 결과 : 전체환자의 5년 생존율은 55.2$\%$였으며, 각 병기별로는 Ib가 100$\%$, IIa가 50.8$\%$, llb가 46.8$\%$, IIIb가 40$\%$(3년)였다. 환자의 연령, 종양의 형태, 암세포 분화도, 항암화학요법의 사용 여부, 골반 림프절 전이 여부, 각 병기별 방사선량 등은 환자의 생존율과는 통계학적으로 유의한 차이를 보이지 않았으며, 병기와 종양의 크기가 생존율에 통계학적으로 유의한 차이를 보여 주었다. 실패양상은 각 병기별 국소 실패율이 Ib가 0%, IIa가 33.3$\%$, IIb가 57.9%$\%$ IIIb가 60였으며, 원격전이율은 Ib가 0$\%$, IIa가 33.3$\%$, IIb가 21.1$\%$, IIb가 40$\%$였다. 특히 복부 대동맥 림프절에 방사선치료를 시행한 환자 6명에서 원격전이는 없었으나, 복부 대동맥 림프절에 방사선치료를 받지 않은 환자에서는 복부 대동맥 림프절을 포함한 원격전이가 23.1$\%$(9/39명)에서 발생하였다. 결론 : 다른 저자들의 연구와 비교하면 큰 차이는 없는 것으로 생각되지만, 주로 II기 환자에서 복부 대동맥 림프절을 포함한 원격전이율이 높은 것으로 생각되므로 선암환자 전체에 대해, 특히 골반 림프절 전이가 있는 경우, 복부 대동맥 림프절에 대한 예방적 방사선치료에 대해 연구가 필요할 것으로 생각된다.

  • PDF