DOI QR코드

DOI QR Code

Planning and decommissioning of a disused Theratron- 780 teletherapy machine and the dose assessment methodology for normal and radiological emergency conditions

  • Mohamed M.Elsayed Breky (Radiation Protection Department, Hot Labs and Radioactive Waste Management Center, Egyptian Atomic Energy Authority) ;
  • Muhammad S. Mansy (Radioactive Waste Management Unit, Hot Labs and Radioactive Waste Management Center, Egyptian Atomic Energy Authority) ;
  • A.A. El-Sadek (Radioisotope and Radioactive Generator Department, Hot Labs and Radioactive Waste Management Center, Egyptian Atomic Energy Authority) ;
  • Yousif M. Mousa (Radioactive Waste Management Unit, Hot Labs and Radioactive Waste Management Center, Egyptian Atomic Energy Authority) ;
  • Yasser T. Mohamed (Radioactive Waste Management Unit, Hot Labs and Radioactive Waste Management Center, Egyptian Atomic Energy Authority)
  • Received : 2022.01.02
  • Accepted : 2022.08.21
  • Published : 2023.01.25

Abstract

The present work represents a technical guideline for decommissioning a disused teletherapy machine model Theratron-780 and contains category one 60Co radioactive source. The first section predicts the dose rate from the source in case of normal and radiological emergency situations via FLUKA-MC simulation code. Moreover, the dose assessment for the occupational during the whole process is calculated and compared to the measured values. A suggested cordoned area for safety and security in a radiological emergency is simulated. The second section lists the whole process's technical procedures, including (preview, dismantle, securing, transport and storage) of the disused teletherapy machine. Results show that the maximum obtained accumulated dose for occupational were found to be 24.5 ± 4.9 μSv in the dismantle and securing process in addition to 3.5 ± 1.8 μSv during loading on the transport vehicle and unloading at the storage facility. It was found that the measured accumulated dose for workers is in good agreement with the estimated one by uncertainty not exceeding 5% in normal operating conditions.

Keywords

References

  1. F.M. Khan, J.P. Gibbons, Khan's the physics of radiation therapy. https://doi.org/10.4103/jmp.jmp_17_20, 2019. 
  2. R.L. Murray, Understanding Radioactive Waste, fifth ed., Battelle Pr, 2003. 
  3. International Atomic Energy Agency, Code of conduct on the safety and security of radioactive sources, Int. Energy Agency. (2004) 1-16. https://www.iaea.org/ar/publications/documents/infcircs/code-conduct-safety-and-security-radioactive-sources-and-supplementary-guidance-import-and-export-radioactive-sources. (Accessed 29 October 2021). 
  4. IAEA, Management of disused sealed radioactive sources. https://www.iaea.org/publications/10582/management-of-disused-sealed-radioactive-sources, 2014. (Accessed 29 October 2021), 165. 
  5. International Atomic Energy Agency, The radiological accident in Goiania. https://www.iaea.org/publications/3684/the-radiological-accident-in-goiania, 1988. (Accessed 25 September 2021). 
  6. IAEA Authors, The radiological accident in Panama. https://www.iaea.org/publications/10602/the-radiological-accident-in-lia-georgia, 1990. (Accessed 14 December 2021). 
  7. IAEA, The radiological accident in Tammiku (Estonia) - 1994. https://www.iaea.org/publications/4738/the-radiological-accident-in-tammiku, 1998. (Accessed 14 December 2021). 
  8. G.G. Eichholz, The radiological accident in cochabamba, Health Phys. 89 (2005) 284, https://doi.org/10.1097/00004032-200509000-00020. 
  9. IAEA Authors, The radiological accident in Istanbul. https://www.iaea.org/publications/13423/the-radiological-accident-in-ventanilla, 2000. (Accessed 14 December 2021), 86. 
  10. IAEA, The radiological accident in Soreq. https://www.iaea.org/publications/3798/the-radiological-accident-in-soreq, 1993. (Accessed 14 December 2021). 
  11. Y.T. Selim, Y.F. Lasheen, M.A. Hassan, T.M. El Zakla, Removal of Alcyon II, CGR, MeV 60Co teletherapy head and evaluation of exposure dose, J. Environ. Prot. (Irvine,. Calif. (2013) 1435-1440, https://doi.org/10.4236/jep.2013.412164, 04. 
  12. G. Battistoni, T. Boehlen, F. Cerutti, P.W. Chin, L.S. Esposito, A. Fasso, A. Ferrari, A. Lechner, A. Empl, A. Mairani, A. Mereghetti, P.G. Ortega, J. Ranft, S. Roesler, P.R. Sala, V. Vlachoudis, G. Smirnov, Overview of the FLUKA code, Ann. Nucl. Energy 82 (2015) 10-18, https://doi.org/10.1016/j.anucene.2014.11.007. 
  13. T.T. Bohlen, F. Cerutti, M.P.W. Chin, A. Fass € o, A. Ferrari, P.G. Ortega, A. Mairani, P.R. Sala, G. Smirnov, V. Vlachoudis, The FLUKA code: developments and challenges for high energy and medical applications, Nucl. Data Sheets 120 (2014) 211-214, https://doi.org/10.1016/J.NDS.2014.07.049. 
  14. M.S. Mansy, Y.F. Lasheen, M.M.E. Breky, Y. Selim, Experimental and theoretical investigation of Pb-Sb alloys as a gamma-radiation shielding material, Radiat. Phys. Chem. 183 (2021), 109416, https://doi.org/10.1016/j.radphyschem.2021.109416. 
  15. V. Vlachoudis, Flair: a powerful but user friendly graphical interface for Fluka, in: Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York, 2009. 
  16. H. Petroccia, N. Mendenhall, C. Liu, C. Hammer, W. Culberson, T. Thar, T. Mitchell, Z. Li, W. Bolch, A hybrid phantom Monte Carlo-based method for historical reconstruction of organ doses in patients treated with cobalt-60 for Hodgkin's lymphoma, Phys. Med. Biol. 62 (2017) 6261-6289, https://doi.org/10.1088/1361-6560/aa7c2f. 
  17. N. Petoussi-Henss, W.E. Bolch, K.F. Eckerman, A. Endo, N. Hertel, J. Hunt, M. Pelliccioni, H. Schlattl, M. Zankl, Conversion coefficients for radiological protection quantities for external radiation exposures, Ann. ICRP. 40 (2010) 1-257, https://doi.org/10.1016/j.icrp.2011.10.001. 
  18. Manual for First Responders to a Radiological Emergency Emergency Preparedness and Response, IAEA, EPR-First RESPONDERS, 2006, p. 94. https://www.iaea.org/publications/7606/manual-for-first-responders-to-a-radiological-emergency. (Accessed 14 December 2021). 
  19. F.A. Mettler, Protecting people against radiation exposure in the event of a radiological attack, Ann. ICRP. 35 (2005), https://doi.org/10.1016/j.icrp.2005.01.001. 
  20. P.R. Alexakhin, R.C. Streffer, G.J. D Boice Jr., A. Sugier, G.J. Dicus, D.B. C WinklerE, S.A. Africa I Gonziiez, F.A. Mettler Jr., N.D. Beninson, B. Aires, Y. Sasaki, J. Argentina, Annals of the ICRP published on behalf of the international gommission on radiological protection, n.d. http://www.elsevier.com/locate/jnlabr/jaicrp. 
  21. Muhammad S. Mansy, W.M. Desoky, Investigation of gamma-rays and fast neutrons attenuation parameters for NixCo1-xFe2O4 nickel ferrites, Progr. Nucl. Energy 148 (2022), 104213. https://doi.org/10.1016/j.pnucene.2022.104213.