Acknowledgement
This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (Grant No. NRF- 2019R1C1C1007833).
References
- S.M. Anouncia, R. Saravanan, Non-destructive testing using radiographic images - a survey, Insight - Non-Destructive Testing and Condition Monitoring 48 (2006) 592-597. https://doi.org/10.1784/insi.2006.48.10.592
- R. Hanke, T. Fuchs, N. Uhlmann, X-ray based methods for non-destructive testing and material characterization, Nucl. Instrum. Methods Phys. Res. A 591 (2008) 14-18. https://doi.org/10.1016/j.nima.2008.03.016
- M. Jatteau, C. Berche, Review of image reconstruction techniques in medical transaxial computed tomography, Ann. Radiol. 26 (1983) 13-22.
- F. Xu, L. Helfen, T. Baumbach, H. Suhonen, Comparison of image quality in computed laminography and tomography, Optic Express 20 (2012) 794-806. https://doi.org/10.1364/OE.20.000794
- S.L. Fisher, D.J. Holmes, J.S. Jorgensen, P. Gajjar, J. Behnsen, W.R.B. Lionheart, P.J. Withers, Laminography in the lab: imaging planar objects using a conventional x-ray CT scanner, Meas. Sci. Technol. 30 (2019), 035401. https://doi.org/10.1088/1361-6501/aafcae
- S. Gondrom, J. Zhou, M. Maisl, H. Reiter, M. Kroning, W. Arnold, X-ray computed laminography: an approach of computed tomography for applications with limited access, Nucl. Eng. Des. 190 (1999) 141-147. https://doi.org/10.1016/S0029-5493(98)00319-7
- J. Cant, G. Behiels, J. Sijbers, Continuous digital laminography, in: 6th Conference on Industrial Computed Tomography, Wels, Austria, February 9-12, 2016.
- N.S. O'Brien, R.P. Boardman, I. Sinclair, T. Blumensath, Recent advances in Xray cone-beam computed laminography, J. X-Ray Sci. Technol. 24 (2016) 691-707. https://doi.org/10.3233/XST-160581
- I. Reiser, S. Glick, Tomosynthesis Imaging, A Taylor and Francis Book, Boca Raton, 2014.
- A.E. Petropoulos, S.G. Skiadopoulos, G.A.T. Messaris, A.N. Karahaliou, L.I. Costaridou, Contrast and depth resolution of breast lesions in a digital breast tomosynthesis system, Eur. J. Med. Plants 32 (2016) 277.
- D. Notohara, K. Nishino, K. Shibata, First physical measurements and clinical evaluation for long-view tomosynthesis, Proc. SPIE 7258 (2009) 72581K.
- F. Sprenger, X. Calderon, E. Gidcumb, J. Lu, X. Qian, D. Spronk, A. Tucker, G. Yang, b O. Zhoub, Stationary digital breast tomosynthesis with distributed field emission X-ray tube, Proc. SPIE 7961 (2011) 79615I.
- X. Qian, A. Tucker, E. Gidcumb, J. Shan, G. Yang, X.C. Colon, S. Sultana, J. Lu, O. Zhou, D. Spronk, F. Sprenger, Y. Zhang, D. Kennedy, T. Farbizio, Z. Jing, High resolution stationary digital breast tomosynthesis using distributed carbon nanotube X-ray source array, Med. Phys. 39 (2012) 2090-2099. https://doi.org/10.1118/1.3694667
- C. Puett, C. Inscoe, R. Hilton, A. Mol, E. Platin, J. Lu, O. Zhou, Stationary digital intraoral tomosynthesis: demonstrating the clinical potential of the first-generation system, Proc. SPIE 10573 (2018) 105730E.
- J. Shan, A.W. Tucker, Y.Z. Lee, M.D. Heath, X. Wang, D.H. Foos, J. Lu, O. Zhou, Stationary chest tomosynthesis using a carbon nanotube x-ray source array: a feasibility study, Phys. Med. Biol. 60 (2015) 81-100. https://doi.org/10.1088/0031-9155/60/1/81
- X. Qian, R. Rajaram, X. Calderon-Colon, G. Yang, T. Phan, D.S. Lalush, J. Lu, O. Zhou, Design and characterization of a spatially distributed multibeam field emission x-ray source for stationary digital breast tomosynthesis, Med. Phys. 36 (2009) 4389-4399. https://doi.org/10.1118/1.3213520
- Y. Lu, H.P. Chan, J. Wei, L.M. Hadjiiski, A diffusion-based truncated projection artifact reduction method for iterative digital breast tomosynthesis reconstruction, Phys. Med. Biol. 58 (2013) 569-587. https://doi.org/10.1088/0031-9155/58/3/569
- B. Li, G. Avinash, B. Claus, S. Metz, 3D view weighted cone-beam filtered backprojection reconstruction for digital tomosynthesis, Proc. SPIE 6510 (2007) 65104X.
- J. Son, S. Choi, D. Lee, H. Kim, Truncation artifact reduction using weighted normalization method in prototype R/F chest digital tomosynthesis (CDT) system, J. Korean Soc. Radiol. 13 (2019) 111-118. https://doi.org/10.7742/JKSR.2019.13.1.111
- Y. Zhang, H. Chan, B. Sahiner, J. Wei, C. Zhou, L. Hadjiiski, Artifact reduction methods for truncated projections in iterative breast tomosynthesis reconstruction, J. Comput. Assist. Tomogr. 33 (2009) 426-435. https://doi.org/10.1097/RCT.0b013e3181838000
- G.L. Zeng, G.T. Gullberg, Unmatched projector/backprojector pairs in an iterative reconstruction algorithm, IEEE Trans. Med. Imag. 19 (2000) 548-555. https://doi.org/10.1109/42.870265
- B.D. Man, S. Basu, Distance-driven projection and backprojection in three dimensions, Phys. Med. Biol. 49 (2004) 2463-2475. https://doi.org/10.1088/0031-9155/49/11/024
- W. Zhou, A.C. Bovik, H.R. Sheikh, E.P. Simoncelli, Image quality assessment: from error visibility to structural similarity, IEEE Trans. Image Process. 13 (2004) 600-612. https://doi.org/10.1109/TIP.2003.819861