• Title/Summary/Keyword: radial basis function(RBF)

Search Result 245, Processing Time 0.031 seconds

An Effective Physics Based Deformation Technique Using Augmented Reality Environments (증강현실 환경을 이용한 효율적인 물리기반 형상변형 기술)

  • Choi, Han-Kyun;Kim, Hyun-Soo;Park, Min-Ki;Lee, Kwan H.
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.90-93
    • /
    • 2009
  • The use of physics based deformation methods is continuously increasing in computer graphics area such as game and simulation. Many researchers have worked on this method. However, relatively few researchers have considered the development of the user interaction to the 3D objects. This research proposes a physics-based deformation technique using AR (Augmented Reality) environments to enhance user immersion and the effectiveness of the deformation. In the AR circumstances, the physics based deformation should be accomplished in realtime. In the proposed method, we combine RBF (Radial Basis Function) [1] and LSM (Lattice Shape Matching) [2, 3] and apply it to polygonal models for real-time user interaction. The dynamics of the LSM is also calculated to trace the movement of each lattice. Finally these algorithms are implemented in AR environments.

  • PDF

Feature Vector Extraction and Automatic Classification for Transient SONAR Signals using Wavelet Theory and Neural Networks (Wavelet 이론과 신경회로망을 이용한 천이 수중 신호의 특징벡타 추출 및 자동 식별)

  • Yang, Seung-Chul;Nam, Sang-Won;Jung, Yong-Min;Cho, Yong-Soo;Oh, Won-Tcheon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.71-81
    • /
    • 1995
  • In this paper, feature vector extraction methods and classification algorithms for the automatic classification of transient signals in underwater are discussed. A feature vector extraction method using wavelet transform, which shows good performance with small number of coefficients, is proposed and compared with the existing classical methods. For the automatic classification, artificial neural networks such as multilayer perceptron (MLP), radial basis function (RBF), and MLP-Class are utilized, where those neural networks as well as extracted feature vectors are combined to improve the performance and reliability of the proposed algorithm. It is confirmed by computer simulation with Traco's standard transient data set I and simulated data that the proposed feature vector extraction method and classification algorithm perform well, assuming that the energy of a given transient signal is sufficiently larger than that of a ambient noise, that there are the finite number of noise sources, and that there does not exist noise sources more than two simultaneously.

  • PDF

Content-Based Image Retrieval using RBF Neural Network (RBF 신경망을 이용한 내용 기반 영상 검색)

  • Lee, Hyoung-K;Yoo, Suk-I
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.3
    • /
    • pp.145-155
    • /
    • 2002
  • In content-based image retrieval (CBIR), most conventional approaches assume a linear relationship between different features and require users themselves to assign the appropriate weights to each feature. However, the linear relationship assumed between the features is too restricted to accurately represent high-level concepts and the intricacies of human perception. In this paper, a neural network-based image retrieval (NNIR) model is proposed. It has been developed based on a human-computer interaction approach to CBIR using a radial basis function network (RBFN). By using the RBFN, this approach determines the nonlinear relationship between features and it allows the user to select an initial query image and search incrementally the target images via relevance feedback so that more accurate similarity comparison between images can be supported. The experiment was performed to calculate the level of recall and precision based on a database that contains 1,015 images and consists of 145 classes. The experimental results showed that the recall and level of the proposed approach were 93.45% and 80.61% respectively, which is superior than precision the existing approaches such as the linearly combining approach, the rank-based method, and the backpropagation algorithm-based method.

Performance comparison of SVM and ANN models for solar energy prediction (태양광 에너지 예측을 위한 SVM 및 ANN 모델의 성능 비교)

  • Jung, Wonseok;Jeong, Young-Hwa;Park, Moon-Ghu;Lee, Chang-Kyo;Seo, Jeongwook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.626-628
    • /
    • 2018
  • In this paper, we compare the performances of SVM (Support Vector Machine) and ANN (Artificial Neural Network) machine learning models for predicting solar energy by using meteorological data. Two machine learning models were built by using fifteen kinds of weather data such as long and short wave radiation average, precipitation and temperature. Then the RBF (Radial Basis Function) parameters in the SVM model and the number of hidden layers/nodes and the regularization parameter in the ANN model were found by experimental studies. MAPE (Mean Absolute Percentage Error) and MAE (Mean Absolute Error) were considered as metrics for evaluating the performances of the SVM and ANN models. Sjoem Simulation results showed that the SVM model achieved the performances of MAPE=21.11 and MAE=2281417.65, and the ANN model did the performances of MAPE=19.54 and MAE=2155345.10776.

  • PDF

Real-time Fault Diagnosis of Induction Motor Using Clustering and Radial Basis Function (클러스터링과 방사기저함수 네트워크를 이용한 실시간 유도전동기 고장진단)

  • Park, Jang-Hwan;Lee, Dae-Jong;Chun, Myung-Geun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.6
    • /
    • pp.55-62
    • /
    • 2006
  • For the fault diagnosis of three-phase induction motors, we construct a experimental unit and then develop a diagnosis algorithm based on pattern recognition. The experimental unit consists of machinery module for induction motor drive and data acquisition module to obtain the fault signal. As the first step for diagnosis procedure, preprocessing is performed to make the acquired current simplified and normalized. To simplify the data, three-phase current is transformed into the magnitude of Concordia vector. As the next step, feature extraction is performed by kernel principal component analysis(KPCA) and linear discriminant analysis(LDA). Finally, we used the classifier based on radial basis function(RBF) network. To show the effectiveness, the proposed diagnostic system has been intensively tested with the various data acquired under different electrical and mechanical faults with varying load.

Prediction of replacement period of shield TBM disc cutter using SVM (SVM 기법을 이용한 쉴드 TBM 디스크 커터 교환 주기 예측)

  • La, You-Sung;Kim, Myung-In;Kim, Bumjoo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.5
    • /
    • pp.641-656
    • /
    • 2019
  • In this study, a machine learning method was proposed to use in predicting optimal replacement period of shield TBM (Tunnel Boring Machine) disc cutter. To do this, a large dataset of ground condition, disc cutter replacement records and TBM excavation-related data, collected from a shield TBM tunnel site in Korea, was built and they were used to construct a disc cutter replacement period prediction model using a machine learning algorithm, SVM (Support Vector Machine) and to assess the performance of the model. The results showed that the performance of RBF (Radial Basis Function) SVM is the best among a total of three SVM classification functions (80% accuracy and 10% error rate on average). When compared between ground types, the more disc cutter replacement data existed, the better prediction results were obtained. From this results, it is expected that machine learning methods become very popularly used in practice in near future as more data is accumulated and the machine learning models continue to be fine-tuned.

Development of a Temperature Control Model for a Hot Coil Strip using on-line Retrainable RBF Network (온라인 재학습 가능한 RBF 네트워크를 이용한 열연 권취 온도 제어 모델 개발)

  • Jeong, So-Young;Lee, Min-Ho;Lee, Soo-Young
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.8
    • /
    • pp.39-47
    • /
    • 1999
  • This paper describes on-line retrainable RBF network in order to control the coiling temperature for a hot coil strip at Pohang Iron & Steel Company(POSCO). The proposed neural network can be used for improving conventional rule-based lookup table, which generates a heat transmission coefficient. To cope with time-varying characteristics of hot coil process, additional synaptic weights for on-line retraining purposes are introduced to hidden-to-output weights of conventional RBF network. Those weights are locally adjusted to newly incoming test data while preserving old information trained with off-line past data. Hence the effect of catastrophic interference can be greatly alleviated with the proposed network. In addition, rejection scheme is introduced for reliability concerns. From the experimental results applied to the actual process, it is noticed that overall control performance represents about 2.2% increase compared to the conventional one.

  • PDF

Relations among the multidimensional linear interpolation fuzzy reasoning , and neural networks

  • Om, Kyong-Sik;Kim, Hee-Chan;Byoung-Goo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.562-567
    • /
    • 1998
  • This paper examined the relations among the multidimensional linear interpolation(MDI) and fuzzy reasoning , and neural networks, and showed that an showed that an MDI is a special form of Tsukamoto's fuzzy reasoning and regularization networks in the perspective of fuzzy reasoning and neural networks, respectively. For this purposes, we proposed a special Tsukamoto's membership (STM) systemand triangular basis function (TBF) networks, Also we verified the condition when our proposed TBF becomes a well-known radial basis function (RBF).

  • PDF

Design of RBF Neural Networks Based on Recursive Weighted Least Square Estimation for Processing Massive Meteorological Radar Data and Its Application (방대한 기상 레이더 데이터의 원할한 처리를 위한 순환 가중최소자승법 기반 RBF 뉴럴 네트워크 설계 및 응용)

  • Kang, Jeon-Seong;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.99-106
    • /
    • 2015
  • In this study, we propose Radial basis function Neural Network(RBFNN) using Recursive Weighted Least Square Estimation(RWLSE) to effectively deal with big data class meteorological radar data. In the condition part of the RBFNN, Fuzzy C-Means(FCM) clustering is used to obtain fitness values taking into account characteristics of input data, and connection weights are defined as linear polynomial function in the conclusion part. The coefficients of the polynomial function are estimated by using RWLSE in order to cope with big data. As recursive learning technique, RWLSE which is based on WLSE is carried out to efficiently process big data. This study is experimented with both widely used some Machine Learning (ML) dataset and big data obtained from meteorological radar to evaluate the performance of the proposed classifier. The meteorological radar data as big data consists of precipitation echo and non-precipitation echo, and the proposed classifier is used to efficiently classify these echoes.

Design of Robust Face Recognition Pattern Classifier Using Interval Type-2 RBF Neural Networks Based on Census Transform Method (Interval Type-2 RBF 신경회로망 기반 CT 기법을 이용한 강인한 얼굴인식 패턴 분류기 설계)

  • Jin, Yong-Tak;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.5
    • /
    • pp.755-765
    • /
    • 2015
  • This paper is concerned with Interval Type-2 Radial Basis Function Neural Network classifier realized with the aid of Census Transform(CT) and (2D)2LDA methods. CT is considered to improve performance of face recognition in a variety of illumination variations. (2D)2LDA is applied to transform high dimensional image into low-dimensional image which is used as input data to the proposed pattern classifier. Receptive fields in hidden layer are formed as interval type-2 membership function. We use the coefficients of linear polynomial function as the connection weights of the proposed networks, and the coefficients and their ensuing spreads are learned through Conjugate Gradient Method(CGM). Moreover, the parameters such as fuzzification coefficient and the number of input variables are optimized by Artificial Bee Colony(ABC). In order to evaluate the performance of the proposed classifier, Yale B dataset which consists of images obtained under diverse state of illumination environment is applied. We show that the results of the proposed model have much more superb performance and robust characteristic than those reported in the previous studies.