• Title/Summary/Keyword: radar target identification

Search Result 32, Processing Time 0.02 seconds

An Identification Technique of a Target Signal under ECM Environments (ECM 환경하에서 군함에 대한 반사신호를 식별해내는 알고리즘)

  • 서방원;박한춘;김일민;김병조;이재웅;양태석;김형명
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.138-146
    • /
    • 2001
  • The guided missile carries its own tracking radar to detect its target under noisy environments. The enemy warship uses the anti-missile electric-countermeasure(ECM) technique, such as chaff or decoy, so that the approaching guided missile could not destroy it. In this paper we propose the identification algorithm of a target signal when the enemy warship uses the chaff and decoy to deceive the guided missile. In the proposed scheme the mean square errors(MSE) between the received signals and the reference decoy signal, and between the received signals and the reference chaff signal are calculated. Then, the received signal which results in the maximum MSE is regarded as a warship signal. The performance of the proposed algorithm is verified through the computer simulation.

  • PDF

Beam Scheduling and Task Design Method using TaP Algorithm at Multifunction Radar System (다기능 레이다 시스템에서 TaP(Time and Priority) 알고리즘을 이용한 빔 스케줄링 방안 및 Task 설계방법)

  • Cho, In-Cheol;Hyun, Jun-Seok;Yoo, Dong-Gil;Shon, Sung-Hwan;Cho, Won-Min;Song, Jun-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.1
    • /
    • pp.61-68
    • /
    • 2021
  • In the past, radars have been classified into fire control radars, detection radars, tracking radars, and image acquisition radars according to the characteristics of the mission. However, multi-function radars perform various tasks within a single system, such as target detection, tracking, identification friend or foe, jammer detection and response. Therefore, efficient resource management is essential to operate multi-function radars with limited resources. In particular, the target threat for tracking the detected target and the method of selecting the tracking cycle based on this is an important issue. If focus on tracking a threat target, Radar can't efficiently manage the targets detected in other areas, and if you focus on detection, tracking performance may decrease. Therefore, effective scheduling is essential. In this paper, we propose the TaP (Time and Priority) algorithm, which is a multi-functional radar scheduling scheme, and a software design method to construct it.

A Simulation of the Detection of Buried Facilities using FDTD (FDTD를 이용한 매설 설비의 탐지 시뮬레이션)

  • Lee, Woo-Chan;Kim, Hyeong-Seok
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.10 no.2
    • /
    • pp.68-73
    • /
    • 2011
  • In Ground Penetrating Radar (GPR) for buried object detection, it is important to identify a buried target because removal of an unwanted target requires as much time and effort as does a wanted target. For a simulation of the target identification, the FDTD (Finite Difference Time Domain) and PML (Perfectly Matched Layer) techniques are widely used. Simulation results vary depending on the type of the buried object and the position of the source. As a result, this paper illustrates the range (time) profile of the five types of facilities including PEC (Perfect Electric Conductor) rectangular box and pipes, and shows the comparison of the range profile of the buried facilities.

  • PDF

Study on Application of Real Time AIS Information

  • Hori, Akihiko;Arai, Yasuo;Okuda, Shigeyuki
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2006.10a
    • /
    • pp.63-70
    • /
    • 2006
  • Now AIS (Automatic Identification System) has been under full operation for ocean-going vessels, and it is expected not only to identify target ships but also to take collision avoidance using AIS information with Radar and ARFA information in restricted waters. AIS information is very useful not only for target identifications but also for taking collision avoidance, but OOW (Officer OF Watch-keeping) should take care of systematic observation of AIS because of miss-operation or malfunction of AIS. In this paper, we propose the application of Onboard Ship Handling Simulator with visual system displayed 3D scene added AIS performance such as blind areas of Island, microwave propagation, ok. and maneuvering simulation using TK models, applied real time AIS information and research the effectiveness of this system for ship handling in restricted waters, and discus the principal issues through the on board experiments. Conclusion will be expected that; 1) systematic observation of ASS information using visual scene simulator with AIS information will be effectively done, 2) observation compared with Radar and ARPA information will be also useful to make a systematic observation, 3) using the recording and replay function of simulation will be useful not only for systematic observation but also to measure and to encourage officers' skill.

  • PDF

Multiple PDAF Algorithm for Estimation States Multiple of the Ships (다중 선박의 상태추정을 위한 Multiple PDAF 알고리즘)

  • Jaeha Choi;Jeonghong Park;Minju Kang;Hyejin Kim;Wonkeun Youn
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.4
    • /
    • pp.248-255
    • /
    • 2023
  • In order to implement the autonomous navigation function, it is essential to track an object within a certain radius of the ship's route. This paper proposes the Multiple Probabilistic Data Association Filter (MPDAF), which can track multiple ships by extending Probabilistic Data Association Filter (PDAF), an existing single object tracking algorithm, using radar data obtained from real marine environments. The proposed MPDAF algorithm was developed to address the problem of tracking multiple objects in a complex environment where there can be significant uncertainty in the number and identification of objects to be tracked. Using real-world radar data provided by the German aerospace center (DLR), it has been verified that the proposed algorithm can track a large number of objects with a small position error.

Concept Design of Marine-RFID (해상 RFID 개념 설계)

  • Ku, Ja-Young;Yim, Jeong-Bin;Jeong, Jung-Sik;Nam, Taek-Keun;Lee, Jae-Eung
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.29 no.1
    • /
    • pp.153-161
    • /
    • 2005
  • Recently, The government of Korea declared to develop RFID(Radio Frequency IDentification) as one of key strategic technology to perform U-Government using Ubiquitous technology. But, most of the related technologies for RFID are mainly focused on the inlaned application excepting marine applications. The last target of this study is to implement new Marine RFID(M-RFID) that can cover all of EEZ areas as large five times as inland volume. In this paper, as a basic study for the M-RFID, we carried out an establishing the concept design of M-RFID, developing the construction method of M-RFID and, extending the idea of M-RFID. As studying results, it is known that the M-RFID can be use in many practical areas such as the protection of EEZ area and aqua culture, the safety of fisher man, the disaster control for inlander and, fisheries ligistics with real-time.

  • PDF

Ultra-high Temperature EM Wave Absorption Behavior for Ceramic/Sendust-aluminosilicate Composite in X-band (X-Band 영역에서의 세라믹/샌더스트-알루미노실리케이트 복합재의 초고온 전자파 흡수 거동)

  • Choi, Kwang-Sik;Sim, Dongyoung;Choi, Wonwoo;Shin, Joon-Hyung;Nam, Young-Woo
    • Composites Research
    • /
    • v.35 no.3
    • /
    • pp.201-215
    • /
    • 2022
  • This paper presents the development of thin and lightweight ultra-high temperature radar-absorbing ceramic composites composed of an aluminosilicate ceramic matrix-based geopolymer reinforced ceramic fiber and sendust magnetic nanoparticles in X-band frequency range (8.2~12.4 GHz). The dielectric properties with regard to complex permittivity of ceramic/sendust-aluminosilicate composites were proportional to the size of sendust magnetic nanoparticle with high magnetic characteristic properties as flake shape and its concentrations in the target frequency range. The characteristic microstructures, element composition, phase identification, and thermal stability were examined by SEM, EDS, VSM and TGA, respectively. The fabricated total thicknesses of the proposed single slab ultra-high temperature radar absorber correspond to 1.585 mm, respectively, exhibiting their excellent EM absorption performance. The behavior of ultra-high temperature EM wave absorption properties was verified to the developed free-space measurement system linked with high temperature furnace for X-band from 25℃ to 1,000℃.

Analysis of Ship Classification Performances Using OpenSARShip DB (OpenSARShip DB를 이용한 선박식별 성능 분석)

  • Lee, Seung-Jae;Chae, Tae-Byeong;Kim, Kyung-Tae
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.5
    • /
    • pp.801-810
    • /
    • 2018
  • Ship monitoring using satellite synthetic aperture radar (SAR) images consists of ship detection, ship discrimination, and ship classification. A large number of methods have been proposed to improve the detection and discrimination capabilities, while only a few studies exist for ship classification. Thus, many studies for the ship classification are needed to construct ship monitoring system having high performance. Note that constructing database (DB), which contains both SAR images and labels of various ships, is important for research on the ship classification. In the airborne SAR classification, many methods have been developed using moving and stationary target acquisition and recognition (MSTAR) DB. However, there has been no publicly available DB for research on the ship classification using satellite SAR images. Recently, Shanghai Key Laboratory has constructed OpenSARShip DB using both SAR images of various ships generated from Sentinel-1 satellite of European Space Agency (ESA) and automatic identification system (AIS) information. Thus, the applicability of OpenSARShip DB for ship classification should be investigated by using the concepts of airborne SAR classification which have shown high performances. In this study, ship classification using satellite SAR images are conducted by applying the concepts of airborne SAR classification to OpenSARShip DB, and then the applicability of OpenSARShip DB is investigated by analyzing the classification performances.

Accuracy Analysis of Target Recognition according to EOC Conditions (Target Occlusion and Depression Angle) using MSTAR Data (MSTAR 자료를 이용한 EOC 조건(표적 폐색 및 촬영부각)에 따른 표적인식 정확도 분석)

  • Kim, Sang-Wan;Han, Ahrim;Cho, Keunhoo;Kim, Donghan;Park, Sang-Eun
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.3
    • /
    • pp.457-470
    • /
    • 2019
  • Automatic Target Recognition (ATR) using Synthetic Aperture Radar (SAR) has been attracted attention in the fields of surveillance, reconnaissance, and national security due to its advantage of all-weather and day-and-night imaging capabilities. However, there have been some difficulties in automatically identifying targets in real situation due to various observational and environmental conditions. In this paper, ATR problems in Extended Operating Conditions (EOC) were investigated. In particular, we considered partial occlusions of the target (10% to 50%) and differences in the depression angle between training ($17^{\circ}$) and test data ($30^{\circ}$ and $45^{\circ}$). To simulate various occlusion conditions, SARBake algorithm was applied to Moving and Stationary Target Acquisition and Recognition (MSTAR) images. The ATR accuracies were evaluated by using the template matching and Adaboost algorithms. Experimental results on the depression angle showed that the target identification rate of the two algorithms decreased by more than 30% from the depression angle of $45^{\circ}$ to $30^{\circ}$. The accuracy of template matching was about 75.88% while Adaboost showed better results with an accuracy of about 86.80%. In the case of partial occlusion, the accuracy of template matching decreased significantly even in the slight occlusion (from 95.77% under no occlusion to 52.69% under 10% occlusion). The Adaboost algorithm showed better performance with an accuracy of 85.16% in no occlusion condition and 68.48% in 10% occlusion condition. Even in the 50% occlusion condition, the Adaboost provided an accuracy of 52.48%, which was much higher than the template matching (less than 30% under 50% occlusion).

Verification of Kompsat-5 Sigma Naught Equation (다목적실용위성 5호 후방산란계수 방정식 검증)

  • Yang, Dochul;Jeong, Horyung
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_3
    • /
    • pp.1457-1468
    • /
    • 2018
  • The sigma naught (${\sigma}^0$) equation is essential to calculate geo-physical properties from Synthetic Aperture Radar (SAR) images for the applications such as ground target identification,surface classification, sea wind speed calculation, and soil moisture estimation. In this paper, we are suggesting new Kompsat-5 (K5) Radar Cross Section (RCS) and ${\sigma}^0$ equations reflecting the final SAR processor update and absolute radiometric calibration in order to increase the application of K5 SAR images. Firstly, we analyzed the accuracy of the K5 RCS equation by using trihedral corner reflectors installed in the Kompsat calibration site in Mongolia. The average difference between the calculated values using RCS equation and the measured values with K5 SAR processor was about $0.2dBm^2$ for Spotlight and Stripmap imaging modes. In addition, the verification of the K5 ${\sigma}^0$ equation was carried out using the TerraSAR-X (TSX) and Sentinel-1A (S-1A) SAR images over Amazon rainforest, where the backscattering characteristics are not significantly affected by the seasonal change. The calculated ${\sigma}^0$ difference between K5 and TSX/S-1A was less than 0.6 dB. Considering the K5 absolute radiometric accuracy requirement, which is 2.0 dB ($1{\sigma}$), the average difference of $0.2dBm^2$ for RCS equation and the maximum difference of 0.6 dB for ${\sigma}^0$ equation show that the accuracies of the suggested equations are relatively high. In the future, the validity of the suggested RCS and ${\sigma}^0$ equations is expected to be verified through the application such as sea wind speed calculation, where quantitative analysis is possible.