• Title/Summary/Keyword: radar signal processing

Search Result 308, Processing Time 0.028 seconds

A Study on Real-time Data Preprocessing Technique for Small Millimeter Wave Radar (소형 밀리미터파 레이더를 위한 실시간 데이터 전처리 방법 연구)

  • Choi, Jinkyu;Shin, Youngcheol;Hong, Soonil;Park, Changhyun;Kim, Younjin;Kim, Hongrak;Kwon, Junbeom
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.6
    • /
    • pp.79-85
    • /
    • 2019
  • Recently, small radar require the development of small millimeter wave radar with high distance resolution to disable the target's system with a single strike. Small millimeter wave radar with high distance resolution need to process large amounts of data in real time to acquire and track target. In this paper, we summarized the real-time data preprocessing method to process the large amount of data required for small millimeter wave radar. In addition, the digital IF(Intermediate Frequency) receiver, Window processing, and, DFT(Discrete Fourier Transform) functions presented by real-time data preprocessing are implemented using FPGA(Field Programmable Gate Array). Finally the implemented real-time data preprocessing module was applied to the signal processor for small millimeter wave radar and verified by performance test related to the real-time preprocessing function.

Maximum Power Waveform Design for Bistatic MIMO Radar System

  • Shin, Hyuksoo;Yeo, Kwang-Goo;Yang, Hoongee;Chung, Youngseek;Kim, Jongman;Chung, Wonzoo
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.4
    • /
    • pp.167-172
    • /
    • 2014
  • In this paper we propose a waveform design algorithm that localizes the maximum output power in the target direction. We extend existing monostatic radar optimal waveform design schemes to bistatic multiple-input multiple-output (MIMO) radar systems. The algorithm simultaneously calculates the direction of departure (DoD) and the direction of arrival (DoA) using a two-dimensional multiple signal classification (MUSIC) method, and successfully localizes the maximum transmitted power to the target locations by exploiting the calculated DoD. The simulation results confirm the performance of the proposed algorithm.

Wide-Angle Radar Target Classification with Subclass Concept (Subclass 개념을 이용한 넓은 관측각에서의 레이더 표적인식 성능향상에 관한 연구)

  • 서동규;김경태;김효태
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.8
    • /
    • pp.777-782
    • /
    • 2002
  • The range profile is easily obtainable and promising feature vector in the aspect of real-time radar target recognition system. However, the range profile is highly dependent on a aspect angle of a target and this dependence make it difficult the recognition over wide-angular region. In this paper, we propose the classifier with subclass concept in order to solve this dependence problem. Recognition results using six aircraft models measured at compact range facility are presented to show the effectiveness of this proposed classifier over wide-angular region.

Detection of Abnormal Area of Ground in Urban Area by Rectification of Ground Penetrating Radar Signal (지하투과레이더 신호의 보정을 통한 도심지 내 지반 이상구간의 검측)

  • Kang, Seonghun;Lee, Jong-Sub;Lee, Sung Jin;Lee, Jin Wook;Hong, Won-Taek
    • The Journal of Engineering Geology
    • /
    • v.27 no.3
    • /
    • pp.217-231
    • /
    • 2017
  • The subsidence of ground in urban area can be caused by the occurrence of the cavity and the change in ground volumetric water content. The objective of this study is the detection of abnormal area of ground in urban area where the cavity or the change in ground volumetric water content is occurred by the ground penetrating radar signal. GPR survey is carried out on the test bed with a circular buried object. From the GPR survey, the signals filtered by the bandpass filtering are measured, and the methods consisting of gain function, time zero, background removal, deconvolution and display gain are applied to the filtered signals. As a result of application of the signal processing methods, the polarity of signal corresponds with the relation of electrical impedance of the cavity and the ground in test bed. In addition, the relative permittivity calculated by GPR signal is compared with that of predicted by volumetric water content of the test bed. The relative permittivities obtained from two different methods show similar values. Therefore, the abnormal area where the change in ground volumetric water content is occurred can be detected from the results of the GPR survey in case the depth of underground utilities is known. Signal processing methods and estimation of relative permittivity performed in this study may be effectively used to detect the abnormal area of ground in urban area.

Increment Method of Radar Range using Noise Reduction (잡음 감소 기법을 활용한 레이다의 최대 거리 향상 기법)

  • Lee, Dong-Hyo;Chung, Daewon;Shin, Hanseop;Yang, Hyung-Mo;Kim, Sangdong;Kim, Bong-seok;Jin, Youngseok
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.24 no.6
    • /
    • pp.1-10
    • /
    • 2019
  • This paper proposes a method to improve the detectable distance by reducing noise to perform a signal processing technique on the received signals. To increase the radar detection range, the noise component of the received signal has to be reduced. The proposed method reduces the noise component by employing two methods. First, the radar signals received with multiple pulses are accumulated. As the number of additions increases, the noise component gradually decreases due to noise randomness. On the other hand, the signal term gradually increases and thus signal to noise ratio increases. Secondly, after converting the accumulated signal into the frequency spectrum, a Least Mean Square (LMS) filter is applied. In the case of the radar received signal, desired signal exists in a specific part and most of the rest is a noise. Therefore, if the LMS filter is applied in the time domain, the noise increases. To prevent this, the LMS filter is applied after converting the received signal into the entire frequency spectrum. The LMS filter output is then transformed into the time domain and then range estimation algorithm is performed. Simulation results show that the proposed scheme reduces the noise component by about 25 dB. The experiment was conducted by comparing the proposed results with the conventional results of the radars held by the Korea Aerospace Research Institute for the international space station.

A Study on the Effective Scattering Center Analysis for Radar Cross Section Reduction of Complex Structures (복합구조물의 RCS 저감을 위한 효율적 산란중심 해석에 관한 연구)

  • Kim, Kook-Hyun;Kim, Jin-Hyeong;Cho, Dae-Seung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.4 s.142
    • /
    • pp.421-426
    • /
    • 2005
  • Scattering center extraction schemes for radar cross section reduction of large complex targets, like warships, was developed, which are an 1-D radar image method(range profile), and a direct analysis based on an object precision method. The analysis result of partial dihedral model shows that the presented direct analysis method is more efficient than the 1-D radar image method for scattering center extraction of interested targets, in terms of radar cross section reduction design, not signal processing. In order to verify the accuracy of the direct analysis method, a scattering center analysis of an naval weapon system was carried out, and the result was coincident with that of another well-known RCS analysis program. Finally, an analysis result of RCS and its scattering center of an 120m class warship-like model presented that the direct analysis method can be an efficient and powerful tools for radar cross section reduction of large complex targets.

Width Estimation of Stationary Objects using Radar Image for Autonomous Driving of Unmanned Ground Vehicles (무인차량 자율주행을 위한 레이다 영상의 정지물체 너비추정 기법)

  • Kim, Seongjoon;Yang, Dongwon;Kim, Sujin;Jung, Younghun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.711-720
    • /
    • 2015
  • Recently many studies of Radar systems mounted on ground vehicles for autonomous driving, SLAM (Simultaneous localization and mapping) and collision avoidance have been reported. Since several pixels per an object may be generated in a close-range radar application, a width of an object can be estimated automatically by various signal processing techniques. In this paper, we tried to attempt to develop an algorithm to estimate obstacle width using Radar images. The proposed method consists of 5 steps - 1) background clutter reduction, 2) local peak pixel detection, 3) region growing, 4) contour extraction and 5)width calculation. For the performance validation of our method, we performed the test width estimation using a real data of two cars acquired by commercial radar system - I200 manufactured by Navtech. As a result, we verified that the proposed method can estimate the widths of targets.

Multi-Mode Radar System Model Design for Helicopter (헬기탑재 다중모드 레이다 시스템 모델 설계)

  • Kwag, Young-Kil;Bae, Jae-Hoon
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.208-212
    • /
    • 2003
  • An airborne radar is an essential aviation electronic system of the helicopter to perform various missions in all-weather environments. This paper presents the conceptual design results of the multi-mode pulsed Doppler radar system testbed model for helicopter. Due to the inherent flight nature of the hovering vehicle which is flying in low-altitude and low speed, as well as rapid maneuvering, the moving clutters from the platform should be suppressed by using a special MTD (Moving Target Detector) processing. For the multi-mode radar system model design, the flight parameters of the moving helicopter platform were assumed: altitude of 3 Km, average cruising velocity of 150knots. The multi-mode operation capability was applied such as short-range, medium-range, and long-range depending on the mission of the vehicle. The nominal detection ranges is 30 Km for the testbed experimental model, but can be expanded up to 75 Km for the long range weather mode. The detection probability of each mode is also compared in terms of the signal-to noise ratio of each mode, and the designed radar system specifications ate provided as a design results.

  • PDF

Eigenimage-Based Signal Processing for Subsurface Inhomogeneous Clutter Reduction in Ground-Penetrating Radar Images (지하 탐사 레이더 영상에서 지하의 비균일 클러터 저감을 위한 고유 영상기반 신호처리)

  • Hyun, Seung-Yeup;Kim, Se-Yun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.11
    • /
    • pp.1307-1314
    • /
    • 2012
  • To reduce the effects of clutters with subsurface inhomogenities in ground-penetrating radar(GPR) images, an eigenimage based signal-processing technique is presented. If the conventional eigenimage filtering technique is applied to B-scan images of a GPR survey, relatively homogeneous clutters such as antenna ringing, direct coupling between transmitting and receiving antennas, and soil-surface reflection, can be removed sufficiently. However, since random clutters of subsurface inhomogenities still remain in the images, target signals are distorted and obscured by the clutters. According to a comparison of the eigenimage filtering results, there is different coherency between subsurface clutters and target signals. To reinforce the pixels with high coherency and reduce the pixels with low coherency, the pixel-by-pixel geometric-mean process after the eigenimage filtering is proposed here. For the validity of the proposed approach, GPR survey for detection of a metal target in a randomly inhomogeneous soil is numerically simulated by using a random media generation technique and the finite-difference time-domain(FDTD) method. And the proposed signal processing is applied to the B-scan data of the GPR survey. We show that the proposed approach provides sufficient enhancement of target signals as well as remarkable reduction of subsurface inhomogeneous clutters in comparison with the conventional eigenimage filtering.

Detection of Delamination inside Concrete Using Ground Penetrating Radar (GPR을 이용한 콘크리트 내 공동 탐사)

  • Rhim, Hong-Chul;Lee, Soong-Jae;Woo, Sang-Kyun;Song, Young-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.2
    • /
    • pp.177-184
    • /
    • 2003
  • A series of experimental work has been conducted to evaluate the capability of Ground Penetrating Radar (GPR) system in detecting delamination inside concrete. Three antenna at 900 MHz, 1000 MHz, and 1500 MHz frequency are used in the experiments for laboratory size specimens, and 400 MHz antenna has been used for a large size specimen. The laboratory size specimens have the dimensions of 1,000 mm (length) ${\times}$ 600 mm (width) ${\times}$ 140 mm (thickness) with a delamination of 200 mm (length) ${\times}$ 600 mm (width) ${\times}$ 140 mm (thickness). The cover depth of the delamination is varied as follows: 20 mm, 30 mm, 60 mm, and 70 mm. In all cases, the delamination has been successfully identified. The property of three frequencies was seized about detecting delamination. Also, it was shown that the image results in GPR were improved by signal processing.