• Title/Summary/Keyword: queuing technology

Search Result 77, Processing Time 0.024 seconds

Analysis of queuing mine-cars affecting shaft station radon concentrations in Quzhou uranium mine, eastern China

  • Hong, Changshou;Zhao, Guoyan;Li, Xiangyang
    • Nuclear Engineering and Technology
    • /
    • v.50 no.3
    • /
    • pp.453-461
    • /
    • 2018
  • Shaft stations of underground uranium mines in China are not only utilized as waiting space for loaded mine-cars queuing to be hoisted but also as the principal channel for fresh air taken to working places. Therefore, assessment of how mine-car queuing processes affect shaft station radon concentration was carried out. Queuing network of mine-cars has been analyzed in an underground uranium mine, located in Quzhou, Zhejiang province of Eastern China. On the basis of mathematical analysis of the queue network, a MATLAB-based quasi-random number generating program utilizing Monte-Carlo methods was worked out. Extensive simulations were then implemented via MATALB operating on a DELL PC. Thereafter, theoretical calculations and field measurements of shaft station radon concentrations for several working conditions were performed. The queuing performance measures of interest, like average queuing length and waiting time, were found to be significantly affected by the utilization rate (positively correlated). However, even with respect to the "worst case", the shaft station radon concentration was always lower than $200Bq/m^3$. The model predictions were compared with the measuring results, and a satisfactory agreement was noted. Under current working conditions, queuing-induced variations of shaft station radon concentration of the study mine are not remarkable.

A New Starting Potential Fair Queuing Algorithm with O(1) Virtual Time Computation Complexity

  • Kwak, Dong-Yong;Ko, Nam-Seok;Kim, Bong-Tae;Park, Hong-Shik
    • ETRI Journal
    • /
    • v.25 no.6
    • /
    • pp.475-488
    • /
    • 2003
  • In this paper, we propose an efficient and simple fair queuing algorithm, called new starting potential fair queuing (NSPFQ), which has O(1) complexity for virtual time computation and also has good delay and fairness properties. NSPFQ introduces a simpler virtual time recalibration method as it follows a rate-proportional property. The NSPFQ algorithm recalibrates the system virtual time to the minimum virtual start time among all possible virtual start times for head-of-line packets in backlogged sessions. Through analysis and simulation, we show that the proposed algorithm has good delay and fairness properties. We also propose a hardware implementation framework for the scheduling algorithm.

  • PDF

On the QoS Behavior of Self-Similar Traffic in a Converged ONU-BS Under Custom Queueing

  • Obele, Brownson Obaridoa;Iftikhar, Mohsin;Kang, Min-Ho
    • Journal of Communications and Networks
    • /
    • v.13 no.3
    • /
    • pp.286-297
    • /
    • 2011
  • A novel converged optical network unit (ONU)-base station (BS) architecture has been contemplated for next-generation optical-wireless networks. It has been demonstrated through high quality studies that data traffic carried by both wired and wireless networks exhibit self-similar and long range dependent characteristics; attributes that classical teletraffic theory based on simplistic Poisson models fail to capture. Therefore, in order to apprehend the proposed converged architecture and to reinforce the provisioning of tightly bound quality of service (QoS) parameters to end-users, we substantiate the analysis of the QoS behavior of the ONU-BS under self-similar and long range dependent traffic conditions using custom queuing which is a common queuing discipline. This paper extends our previous work on priority queuing and brings novelty in terms of presenting performance analysis of the converged ONU-BS under realistic traffic load conditions. Further, the presented analysis can be used as a network planning and optimization tool to select the most robust and appropriate queuing discipline for the ONU-BS relevant to the QoS requirements of different applications.

Quality Adaptation of Intra-only Coded Video Transmission over Wireless Networks

  • Shu Tang;Yuanhong Deng;Peng Yang
    • Journal of Information Processing Systems
    • /
    • v.19 no.6
    • /
    • pp.817-829
    • /
    • 2023
  • Variable wireless channel is a big challenge for real-time video applications, and the rate adaptation of realtime video streaming becomes a hot topic. Intra-video coding is important for high-quality video communication and industrial video applications. In this paper, we proposed a novel adaptive scheme for real-time video transmission with intra-only coding over a wireless network. The key idea of this scheme is to estimate the instantaneous remaining capacity of the network to adjust the quality of the next several video frames, which not only can keep low queuing delay and ensure video quality, but also can respond to bandwidth changes quickly. We compare our scheme with three different schemes in the video transmission system. The experimental results show that our scheme has higher bandwidth utilization and faster bandwidth change response, while maintaining low queuing delay.

Optimizing Fsync Performance with Dynamic Queue Depth Adaptation

  • Park, Daejun;Kim, Min Ji;Shin, Dongkun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.5
    • /
    • pp.570-576
    • /
    • 2015
  • Existing flash storage devices such as universal flash storage and solid state disk support command queuing to improve storage I/O bandwidth. Command queuing allows multiple read/write requests to be pending in a device queue. Because multi-channel and multi-way architecture of flash storage devices can handle multiple requests simultaneously, command queuing is an indispensable technique for utilizing parallel architecture. However, command queuing can be harmful to the latency of fsync system call, which is critical to application responsiveness. We propose a dynamic queue depth adaptation technique, which reduces the queue depth if user application is expected to send fsync calls. Experiments show that the proposed technique reduces the fsync latency by 79% on average compared to the original scheme.

A Capacity Modeling of Bluetooth Access Points for Location Based Service with Mobile Phone and Bluetooth

  • Kim, In-Hwan;Shin, Soo Young;Song, Young-Ho;Chung, Ki-Dong;Jeong, Gu-Min
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.183-189
    • /
    • 2013
  • In this paper, we propose a capacity modeling method for Bluetooth based LBSs (Location Based Services) between Bluetooth APs(Access Points) and mobile phones. In order to do this, we consider the entrance and exit of the users to and from the AP. Using parameters such as the connection time, data transmission time and number of users in the AP zone, we analyze the capacity of a Bluetooth AP using an appropriate queuing model. The required number of APs in a certain zone is estimated from the number of users in the zone using the proposed queuing model. By performing simulations and experiments, the validity and applicability of the proposed method are verified.

Analysis of QoS Assurance with PCF and Queuing Disciplines in Home Network (홈 네트워크에서 PCF와 규율을 가진 QoS 보증 분석)

  • Basukala, Roja Kiran;Pyun, Jae-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.10
    • /
    • pp.1801-1807
    • /
    • 2008
  • A home network is a collection and connection of many electronic and electrical devices in home in order to make daily life comfortable, entertaining and safe. The convergence of Ethernet and wireless technology to a single shared broadband connection in residential gateway is the key feature of the home network. This kind of heterogeneous network has realized the need to implement different QoS mechanisms. Basically, in this paper we propose to integrate IP QoS and Wireless QoS mechanisms for QoS assurance in home network. This paper compares the combination of PCF with two queuing algorithms Low Latency Queuing (LLQ) and Custom Queuing (CQ) and concludes that the combination of CQ and PCF performs best for home network.

Tandem Architecture for Photonic Packet Switches

  • Casoni, Maurizio;Raffaelli, Carla
    • Journal of Communications and Networks
    • /
    • v.1 no.3
    • /
    • pp.145-152
    • /
    • 1999
  • A new switch architecture is presented to enhance out-put queuing in photonic packet switches. Its appkication is for a packet switching enviroment based on the optical transport of fixed length packets. This architecture consists of a couple of cas-cading switching elements with output queuing, whose buffer ca-pacity is limited by photonic technology. The introduction of a suitable buffer management allows a very good and balanced ex-ploitation of the available optical memories, realized with fiber de-lay lines. In particular, packet loss performance is here evaluated showing the improvement with respect to the single switch and a way to design large optical switches is shown in order to meet broadband network requirements.

  • PDF

Network Coding delay analysis under Dynamic Traffic in DCF without XOR and DCF with XOR (DCF와 DCF with XOR에서 동적인 트래픽 상태에 따른 네트워크 코딩 지연시간 분석)

  • Oh, Ha-Young;Lee, Junjie;Kim, Chong-Kwon
    • Journal of KIISE:Information Networking
    • /
    • v.36 no.3
    • /
    • pp.251-255
    • /
    • 2009
  • Network coding is a promising technology that increases the system throughput via reducing the number of transmission for a packet delivered from the source node to the destination node. Nevertheless, it suffers from the metrics of end-to-end delay. Network Coding scheme takes more processing delay which occurs as coding node encodes (XOR) a certain number of packets that relayed by the coding node, and more queuing delay which occurs as a packet waits for other packets to be encoded with. Therefore, in this paper, we analyze the dependency of the queuing delay to the arrival rate of each packet. In addition, we analyze and compare the delay in DCF without XOR and DCF with XOR under dynamic traffic.

A Generalized Markov Chain Model for IEEE 802.11 Distributed Coordination Function

  • Zhong, Ping;Shi, Jianghong;Zhuang, Yuxiang;Chen, Huihuang;Hong, Xuemin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.2
    • /
    • pp.664-682
    • /
    • 2012
  • To improve the accuracy and enhance the applicability of existing models, this paper proposes a generalized Markov chain model for IEEE 802.11 Distributed Coordination Function (DCF) under the widely adopted assumption of ideal transmission channel. The IEEE 802.11 DCF is modeled by a two dimensional Markov chain, which takes into account unsaturated traffic, backoff freezing, retry limits, the difference between maximum retransmission count and maximum backoff exponent, and limited buffer size based on the M/G/1/K queuing model. We show that existing models can be treated as special cases of the proposed generalized model. Furthermore, simulation results validate the accuracy of the proposed model.