Journal of the Institute of Electronics Engineers of Korea SP
/
v.47
no.6
/
pp.137-145
/
2010
Digital vessel have to accurate and efficient mange the digital data from various sensors in the digital vessel. But, In sensor network, it is difficult to transmit and analyze the entire stream data depending on limited networks, power and processor. Therefore it is suitable to use alternative stream data processing after classifying the continuous stream data. In this paper, We propose efficient processing method that arrange some sensors (temperature, humidity, lighting, voice) and process query based on sliding window for efficient input stream and pre-clustering using multiple Support Vector Machine(SVM) algorithm and manage hash table to summarized information. Processing performance improve as store and search and memory using hash table and usage reduced so maintain hash table in memory. We obtained to efficient result that accuracy rate and processing performance of proposal method using 35,912 data sets.
Recently semantic web document is produced and added in repository in a cloud computing environment and requires an intelligent semantic agent for analytical classification of documents and information retrieval. The traditional methods of information retrieval uses keyword for query and delivers a document list returned by the search. Users carry a heavy workload for examination of contents because a former method of the information retrieval don't provide a lot of semantic similarity information. To solve these problems, we suggest a key word frequency and concept matching based semantic clustering model using hadoop and NoSQL to improve classification accuracy of the similarity. Implementation of our suggested technique in a cloud computing environment offers the ability to classify and discover similar document with improved accuracy of the classification. This suggested model is expected to be use in the semantic web retrieval system construction that can make it more flexible in retrieving proper document.
Recently data growth rates are growing exponentially according to the rapid expansion of internet. Since users need some of all the information, they carry a heavy workload for examination and discovery of the necessary contents. Therefore information retrieval must provide hierarchical class information and the priority of examination through the evaluation of similarity on query and documents. In this paper we propose an Multi-class support vector machines model based clustering for hierarchical document categorization that make semantic search possible considering the word co-occurrence measures. A combination of hierarchical document categorization and SVM classifier gives high performance for analytical classification of web documents that increase exponentially according to extension of document hierarchy. More information retrieval systems are expected to use our proposed model in their developments and can perform a accurate and rapid information retrieval service.
The Transactions of the Korea Information Processing Society
/
v.7
no.8
/
pp.2273-2286
/
2000
In order to acquire the precise and fast response for an analytical query, proper selection of the views to materialize in data warehouse is very crucial. In traditional view selection algorithms, the whole relations are considered to be selected as materialized views. However, materializing the whole relations rather than a part of relations results in much worse performance in terms of time and space cost. Therefore, we present an improved algorithm for selection of views to materialize using clustering method to overcome the problem resulted from conventional view selection algorithms. In the presented algorithm, ASVMRT(Algorithm for Selection of Views to daterialize using Iteduced Table). we first generate reduced tables in clata warehouse using automatic clustering based on attrihute-values density, then we consider the combination of reduced tables as materialized views instead of the combination of the original hase relations. For the justification of the proposecl algorithm. we show the experimental results in which both time and space cost are approximately 1.8 times better than the conventional algorithms.
The relevance feedback process uses information obtained from a user about an initially retrieved set of documents to improve subsequent search formulations and retrieval performance. In the extended Boolean model, the relevance feedback Implies not only that new query terms must be identified, but also that the terms must be connected with the Boolean AND/OR operators properly Salton et al. proposed a relevance feedback method for the extended Boolean model, called the DNF (disjunctive normal form) method. However, this method has a critical problem in generating a reformulated queries. In this study, we investigate the problem of the DNF method and propose a relevance feedback method using hierarchical clustering techniques to solve the problem. We show the results of experiments which are performed on two data sets: the DOE collection in TREC 1 and the Web TREC 10 collection.
The PC cluster architecture is considered as a cost-effective alternative to the existing supercomputers for realizing a high-performance information retrieval (IR) system. To implement an efficient IR system on a PC cluster, it is essential to achieve maximum parallelism by having the data appropriately distributed to the local hard disks of the PCs in such a way that the disk I/O and the subsequent computation are distributed as evenly as possible to all the PCs. If the terms in the inverted index file can be classified to closely related clusters, the parallelism can be maximized by distributing them to the PCs in an interleaved manner. One of the goals of this research is the development of methods for automatically clustering the terms based on the likelihood of the terms' co-occurrence in the same query. Also, in this paper, we propose a method for duplicate distribution of inverted index records among the PCs to achieve fault-tolerance as well as dynamic load balancing. Experiments with a large corpus revealed the efficiency and effectiveness of our method.
In order to acquire the precise and fast response for an analytical query, proper selection of the views to materialize in data warehouse is very crucial. In traditional algorithms, the whole relation is considered to be selected as materialized views. However, materializing the whole relation rather than a part of relation results in much worse performance in terms of time and space cost. Therefore, we present a new algorithm for selection of views to materialize using clustering method in order to improve the performance of data warehouse including this problem. In the presented algorithm, ASVMR(Algorithm for Selection of Views to Materialize using Reduced table), we first generate reduced tables in data warehouse using automatic clustering based on attribute-values density, then we consider the combination of reduced tables as materialized views instead of the combination of the original base relations. We also show the experimental results in which both time and space cost are approximately 1.8 times better than the conventional algorithms.
International conference on construction engineering and project management
/
2009.05a
/
pp.707-716
/
2009
The role of cost modeller is to facilitate the design process by systematic application of cost factors so as to maintain a sensible and economic relationship between cost, quantity, utility and appearance which thus helps in achieving the client's requirements within an agreed budget. There are a number of research on cost estimates in the early design stage based on the improvement of accuracy or impact factors. It is common knowledge that cost estimates are undertaken progressively throughout the design stage and make use of the information that is available at each phase, through the related research up to now. In addition, Cost estimates in the early design stage shall analyze the information under the various kinds of precondition before reaching the more developed design because a design can be modified and changed in all process depending on clients' requirements. Parametric cost estimating models have been adopted to support decision making in a changeable environment, in the early design stage. These models are using a similar instance or a pattern of historical case to be constituted in project information, geographic design features, relevant data to quantity or cost, etc. OLAP technique analyzes a subject data by multi-dimensional points of view; it supports query, analysis, comparison of required information by diverse queries. OLAP's data structure matches well with multiview-analysis framework. Accordingly, this study implements multi-dimensional information system for case based quantity data related to design information that is utilizing OLAP's technology, and then analyzes impact factors of quantity by the design criteria or parameter of the same meaning. On the basis of given factors examined above, this study will generate the rules on quantity measure and produce resemblance class using clustering of data mining. These sorts of knowledge-base consist of a set of classified data as group patterns, of which will be appropriate stand on the parametric cost estimating method.
Journal of the Korea Society of Computer and Information
/
v.17
no.6
/
pp.163-172
/
2012
Collaborative filtering which is used explicit method in a existing recommedation system, can not only reflect exact attributes of item but also still has the problem of sparsity and scalability, though it has been practically used to improve these defects. This paper proposes the personalized recommendation system using RFM method and k-means clustering in u-commerce which is required by real time accessablity and agility. In this paper, using a implicit method which is is not used complicated query processing of the request and the response for rating, it is necessary for us to keep the analysis of RFM method and k-means clustering to be able to reflect attributes of the item in order to find the items with high purchasablity. The proposed makes the task of clustering to apply the variable of featured vector for the customer's information and calculating of the preference by each item category based on purchase history data, is able to recommend the items with efficiency. To estimate the performance, the proposed system is compared with existing system. As a result, it can be improved and evaluated according to the criteria of logicality through the experiment with dataset, collected in a cosmetic internet shopping mall.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2007.11a
/
pp.287-291
/
2007
기존 센서네트워크 환경의 노드들이 모바일 환경으로 바뀌면서 클러스터를 구축하고 클러스터 헤더를 선정함에 있어 기존 방법은 정적 노드를 대상으로 구축되어 있기 때문에 이를 동적 노드에 적합한 방법으로 구축하기 위해 기존 연속적인 스카이라인 질의방법을 이용하여 클러스터를 구축하고 클러스터헤더를 선정함으로 센서네트워크의 효율적인 환경을 구축하고자 한다. 기존은 클러스터 헤드 선정을 클러스터를 구축하고 구축된 클러스터 내에서 에너지 잔여량을 비교 하여 가장 에너지가 많은 노드를 헤드로 선정하여 라우팅을 고려하는 기법을 사용하였다. 그러나 센서 노드가 모바일 노드일 경우 위치도 함께 고려되어야 할 속성 중 하나일 것이다. 따라서 이 논문에서는 클러스터 헤더 선정기법에서 기존 방식과 달리 클러스터 헤더를 선정하고 클러스터 헤더를 선정하고 클러스터 헤더를 기준으로 R hop 까지를 하나의 클러스터로 설정하는 효율적인 영역 결정 기법을 제안하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.