• Title/Summary/Keyword: quenching effect

Search Result 406, Processing Time 0.018 seconds

The influence of flow rate and temperature on the quenching effect of cooling water (냉각수의 유동속도와 온도가 담금효과에 미치는 영향)

  • 민수홍;김상열
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.4 no.3
    • /
    • pp.24-39
    • /
    • 1982
  • It has already been known that quenching effect is influenced greatly by stirring and changing coolant's temperature on quenching. But according to the past investigations its effect has not been taken into consideration quantitatively in the cooling process. The purpose of this study is that the influence of flow rate and temperature on the quenching effect of cooling water as quenching medium is quantitatively examined by using the open channel. The stream of water in this study is turbulent flow. The temperature of the specimen made of pure copper is measured by CA thermocouple in the vicinity of the surface and recorded by an automatic recorder during the quenching process in city water. The results obtained are as follows; 1. The quenching effect of cooling water generally increases with Reynolds Number(characteristic length; specimen diameter)as shown in the experimental formula; but at the realm of Reynolds Number from 1.2 * 10$^{4}$ to 9.2 * 10$^{4}$, the increasing rate of quenching effect shows little increase. 2. The increasing rate of quenching effect was increased under the flow rate of 221 cm/sec. On the other hand, it was decreased below this flow rate. 3. The quenching effect was influenced by the water temperature and the flow rate. But it was rather dependent upon the former than the latter. 4. Although the quenching effect appeared loosely in the water temperature of 50.deg. C, it was shown that the quenching effect increased in the low flow rate of 31 cm/sec. comparing with the still water. 5. It is desirable to design the quenching system to be over 1.2 * 10$^{4}$ in Reynolds Number or over, 3000$cm^{-1}$ / in V/v in order to increase the quenching effect of the system using open channel.annel.

  • PDF

Analysis of Quenching Resistor Effect to Improve Stability of TIA Circuit for APD (APD용 TIA 회로의 안정성 개선을 위한 Quenching 저항 영향 분석)

  • Ki, Dong-Han;Jin, Yu-Rin;Kim, Sung-Mi;Cho, Seong-Ik
    • Journal of IKEEE
    • /
    • v.26 no.3
    • /
    • pp.373-379
    • /
    • 2022
  • In this paper, since the APD(Avalanche Photo Diode) for LTV(Light to Voltage) conversion uses a high voltage in the operating range unlike other PD(Photo Diode)s, the quenching resistor must be connected in series to prevent overcurrent when using the TIA(Transimpedance Amplifier). In such a case, quenching resistance may affect the transfer function of the TIA circuit, resulting in serious stability. Therefore, in this paper, by analyzing the effect of APD quenching resistance on the voltage and current loop transfer function of TIA, we propose a loop analysis and a method for determining the quenching resistance value to improve stability. TIA circuit with quenching resistance was designed by the proposed method and the stability of operation was verified through simulation and chip fabrication.

Shape Control of Automotive Flexible Plate in Press Quenching (프레스 퀜칭 공정에 의한 자동차 Flexible Plate의 형상 제어 연구)

  • Park, I.H.;Jeong, W.C.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.21 no.4
    • /
    • pp.189-198
    • /
    • 2008
  • The production of automotive chassis parts requiring both high hardness and good shape-holdability is better realized by using press quenching technology, comprising the austenitizaton and the subsequent press quenching in a specially designed stamping tool. The effect of press quenching mold shape on the hardness distribution, bending height, and degree of planeness of automotive flexible plate during press quenching and tempering has been investigated. The preferable shape of the projections of punch and die in contact with the flexible plate was close to oval to improve the flow of cooling oil, leading to the higher hardness. The press quenching mold with three separate parts was more effective to control the dimensional change due to thermal deformation during press quenching. Some decrease in the bending height during tempering may be related to some recovery of the residual stress at $400^{\circ}C$.

A Study on SCr420HB Helical Gear Deformative Simulation by Heat Treatment Quenching Method (열처리 냉각방식 변화에 따른 SCr420HB 헬리컬 기어 시뮬레이션 적용에 관한 연구)

  • Byun, J.H.;Byun, S.D.;Yi, C.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.28 no.1
    • /
    • pp.24-31
    • /
    • 2015
  • In this study, a simulation was used to derive an optimal process of heat treatment with carburizing, and compared the derived result with SCr420HB helical gear in heat treatment with carburized quenching process about a change of the quenching method. The optimal carburizing process time is derived by the simulation with the theoretical time. The process has been performed by oil quenching and salt quenching method. Through the comparison of the results from the simulation(Hardness, effective case depth hardened by carburizing treatment and deformation) and the actual process, analyzed the error value of each quenching. And it verified the applicability of the simulation.

Evidence of Material-dependent and Temperature- dependent Quenching Rates by Infrared Imaging in S.I. GaAs (반절연 갈륨비소의 적외선 영상에 의한 웨이퍼성장조건 및 온도종속 퀀칭율 증명)

  • 강성준
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.7
    • /
    • pp.469-473
    • /
    • 2003
  • The effect of photoquenching on infrared image of the EL2 center in semi-insulating(S.I.) GaAs has been studied using near infrared transmission techniques. Particular interest is devoted to as-grown and annealed samples of undoped S.I. GaAs. It is found that the quenching mechanism is different in each sample and also the quenching rate is dependent on the materials and the quenching temperature which is somewhat inconsistent with other existing publications.

The Effect of Wall Condition on the Methane-air Premixed Flame Propagation between Narrow Two Walls (좁은 간격의 두 벽면 사이에서의 메탄-공기 예혼합 화염 전파에 벽면 상태가 미치는 영향)

  • Choi, Won-Young;Kwon, Hyuck-Mo;Lee, Dae-Hoon;Kwon, Se-Jin
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.37-41
    • /
    • 2004
  • Quenching phenomena is one of major concern in development of millimeter or sub-millimeter scale micro combustor for the size of the combustor is near extinction condition. In this work we focused on the effect of combustor wall condition that was parameterized by Perovskite LSC($La_{0.8}$$Sr_{0.2}$$CoO_3$) redox catalyst. The experiment was done by variable gap-width 2D wall equipment. The flame was produced by premixed methane-air jet issuing from millimeter-scale slot burner and it propagated through the narrow gap of the walls. By comparison of flame behaviour near catalyst-coated wall and simple glass wall, we investigated the effect of possible surface reaction on quenching phenomena. The flame between two plates was observed where the gap of the plates was reduced stepwise from 20mm to a distance of quenching occurrence. The two flames with and without surface modification were almost same by observation. But the gap for the occurrence of quenching was increased between catalyst-coated wall. So we concluded that surface reaction close to combustor wall has a negative effect on micro combustion.

  • PDF

Effect on Anti-impact and Anti-thermal Fatigue Properties of STD61 Material Affected by Gas Quenching Pressure of Quenching Process (STD61 공구강의 내충격 및 내열피로 특성에 미치는 가스 퀜칭 압력의 영향)

  • Park, Hyun-Jun;Choi, Kwang-Jin;Kim, Jong-Yeob;Shin, Seung-Yong;Moon, Kyoung-Il
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.29 no.6
    • /
    • pp.277-283
    • /
    • 2016
  • The influences of cooling pressure of quenching process on the mechanical properties such as hardness, impact endurance and anti-thermal fatigue behaviour of STD61 steel were investigated. The specimens were heat-treated using a vacuum furnace in which they were austenitized at $1,030^{\circ}C$ for 1hour under the pressure of $10^{-3}$ torr and cooled with quenching gas of various pressure, i.e. 1, 2 and 6 bar. According to the observation on the specimens prepared with quenching from austenizing temperature, the mechanical properties of the samples with higher quenching pressure were better than those of prepared at lower quenching pressure. The samples prepared with high quenching pressure showed the more homogeneous microstructure with finer carbides. The size of carbides such as VC and (Fe, Cr)C in quenched specimens decreased with increasing gas quenching pressure. It is considered that the rapid cooling with pressure may restrict the formation and growth of carbide.

Thermal and Chemical Quenching Phenomena in a Microscale Combustor (II)- Effects of Physical and Chemical Properties of SiOx(x≤2) Plates on flame Quenching - (마이크로 연소기에서 발생하는 열 소염과 화학 소염 현상 (II)- SiOx(x≤2) 플레이트의 물리, 화학적 성질이 소염에 미치는 영향 -)

  • Kim Kyu-Tae;Lee Dae-Hoon;Kwon Se-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.5 s.248
    • /
    • pp.405-412
    • /
    • 2006
  • In order to realize a stably propagating flame in a narrow channel, flame instabilities resulting from flame-wall interaction should be avoided. In particular flame quenching is a significant issue in micro combustion devices; quenching is caused either by excessive heat loss or by active radical adsorptions at the wall. In this paper, the relative significance of thermal and chemical effects on flame quenching is examined by means of quenching distance measurement. Emphasis is placed on the effects of surface defect density on flame quenching. To investigate chemical quenching phenomenon, thermally grown silicon oxide plates with well-defined defect distribution were prepared. ion implantation technique was used to control defect density, i.e. the number of oxygen vacancies. It has been found that when the surface temperature is under $300^{\circ}C$, the quenching distance is decreased on account of reduced heat loss; as the surface temperature is increased over $300^{\circ}C$, however, quenching distance is increased despite reduced heat loss effect. Such abberant behavior is caused by heterogeneous surface reactions between active radicals and surface defects. The higher defect density, the larger quenching distance. This result means that chemical quenching is governed by radical adsorption that can be parameterized by oxygen vacancy density on the surface.

Quenching of Ofloxacin and Flumequine Fluorescence by Divalent Transition Metal Cations

  • Park, Hyoung-Ryun;Oh, Chu-Ha;Lee, Hyeong-Chul;Choi, Jae-Gyu;Jung, Beung-In;Bark, Ki-Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.12
    • /
    • pp.2002-2010
    • /
    • 2006
  • This study examined the quenching of ofloxacin (OFL) and flumequine (FLU) fluorescence by $Cuj^{2+}$, $Ni^{2+}$, $Co^{2+}$ and $Mn^{2+}$ in an aqueous solution. The change in the fluorescence intensity and lifetime was measured at various temperatures as a function of the quencher concentration. According to the Stern-Volmer plots, the fluorescence emission was quenched by both collisions (dynamic quenching) and complex formation (static quenching) with the same quencher but the effect of static quenching was larger than that of dynamic quenching. Large static and dynamic quenching constants for both OFL and FLU support significant ion-dipole and orbital-orbital interactions between fluorophore and quencher. For both molecules, the static and dynamic quenching constants by $Cu^{2+}$ were the largest among all the metal quenchers examined in this study. In addition, both the static and dynamic quenching mechanisms by $Cu^{2+}$ were somewhat different from the quenching caused by other metals. Between $Ni^{2+}$ and FLU, a different form of chemical interaction was observed compared with the interaction by other metals. The change in the absorption spectra as a result of the addition of a quencher provided information on static quenching. With all these metals, the static quenching constant of FLU was larger than those of OFL. The fluorescence of OFL was quite insensitive to both the dynamic and static quenching compared with FLU. This property of OFL can be explained by the twisted intramolecular charge transfer in the excited state.