• Title/Summary/Keyword: quaternionic Clifford analysis

Search Result 9, Processing Time 0.019 seconds

SZEGÖ PROJECTIONS FOR HARDY SPACES IN QUATERNIONIC CLIFFORD ANALYSIS

  • He, Fuli;Huang, Song;Ku, Min
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.5
    • /
    • pp.1215-1235
    • /
    • 2022
  • In this paper we study Szegö kernel projections for Hardy spaces in quaternionic Clifford analysis. At first we introduce the matrix Szegö projection operator for the Hardy space of quaternionic Hermitean monogenic functions by the characterization of the matrix Hilbert transform in the quaternionic Clifford analysis. Then we establish the Kerzman-Stein formula which closely connects the matrix Szegö projection operator with the Hardy projection operator onto the Hardy space, and we get the matrix Szegö projection operator in terms of the Hardy projection operator and its adjoint. At last, we construct the explicit matrix Szegö kernel function for the Hardy space on the sphere as an example, and get the solution to a Diriclet boundary value problem for matrix functions.

A POLAR REPRESENTATION OF A REGULARITY OF A DUAL QUATERNIONIC FUNCTION IN CLIFFORD ANALYSIS

  • Kim, Ji Eun;Shon, Kwang Ho
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.2
    • /
    • pp.583-592
    • /
    • 2017
  • The paper gives the regularity of dual quaternionic functions and the dual Cauchy-Riemann system in dual quaternions. Also, the paper researches the polar representation and properties of a dual quaternionic function and their regular quaternionic functions.

DOMAINS OF HYPERHOLOMORPHY AND HYPER STEIN DOMAINS ON CLIFFORD ANALYSIS

  • Park, Hee-Young;Shon, Kwang-Ho
    • The Pure and Applied Mathematics
    • /
    • v.14 no.2 s.36
    • /
    • pp.91-98
    • /
    • 2007
  • We give definitions of hyperholomorphic functions of quaternionic functions of two quaternionic variables. We investigate properties of hyperholomorphic functions on quaternion analysis, and obtain equivalence relations for domains of hyperholomorphy and hyper Stein domains in a domain of $C^2{\times}C^2$.

  • PDF

HYPERMEROMORPHY OF FUNCTIONS ON SPLIT QUATERNIONS IN CLIFFORD ANALYSIS

  • KIM, JI EUN;SHON, KWANG HO
    • East Asian mathematical journal
    • /
    • v.31 no.5
    • /
    • pp.653-658
    • /
    • 2015
  • In this paper, we consider split quaternionic functions defined on an open set of split quaternions and give the split quaternionic functions whose each inverse function is sp-hyperholomorphic almost everywhere on ${\Omega}$. Also, we describe the definitions and notions of pseudoholomorphic functions for split quaternions.

CHARACTERIZATIONS OF SEVERAL SPLIT REGULAR FUNCTIONS ON SPLIT QUATERNION IN CLIFFORD ANALYSIS

  • Kang, Han Ul;Cho, Jeong Young;Shon, Kwang Ho
    • East Asian mathematical journal
    • /
    • v.33 no.3
    • /
    • pp.309-315
    • /
    • 2017
  • In this paper, we investigate the regularities of the hyper-complex valued functions of the split quaternion variables. We define several differential operators for the split qunaternionic function. We research several left split regular functions for each differential operators. We also investigate split harmonic functions. And we find the corresponding Cauchy-Riemann system and the corresponding Cauchy theorem for each regular functions on the split quaternion field.

ON HYPERHOLOMORPHIC Fαω,G(p, q, s) SPACES OF QUATERNION VALUED FUNCTIONS

  • Kamal, Alaa;Yassen, Taha Ibrahim
    • Korean Journal of Mathematics
    • /
    • v.26 no.1
    • /
    • pp.87-101
    • /
    • 2018
  • The purpose of this paper is to define a new class of hyperholomorphic functions spaces, which will be called $F^{\alpha}_{{\omega},G}$(p, q, s) type spaces. For this class, we characterize hyperholomorphic weighted ${\alpha}$-Bloch functions by functions belonging to $F^{\alpha}_{{\omega},G}$(p, q, s) spaces under some mild conditions. Moreover, we give some essential properties for the extended weighted little ${\alpha}$-Bloch spaces. Also, we give the characterization for the hyperholomorphic weighted Bloch space by the integral norms of $F^{\alpha}_{{\omega},G}$(p, q, s) spaces of hyperholomorphic functions. Finally, we will give the relation between the hyperholomorphic ${\mathcal{B}}^{\alpha}_{{\omega},0}$ type spaces and the hyperholomorphic valued-functions space $F^{\alpha}_{{\omega},G}$(p, q, s).