• Title/Summary/Keyword: quasilinear elliptic equation

Search Result 10, Processing Time 0.018 seconds

Oscillation of Certain Second Order Damped Quasilinear Elliptic Equations via the Weighted Averages

  • Xia, Yong;Xu, Zhiting
    • Kyungpook Mathematical Journal
    • /
    • v.47 no.2
    • /
    • pp.191-202
    • /
    • 2007
  • By using the weighted averaging techniques, we establish oscillation criteria for the second order damped quasilinear elliptic differential equation $$\sum_{i,j=1}^{N}D_i(a_{ij}(x){\parallel}Dy{\parallel}^{p-2}D_jy)+{\langle}b(x),\;{\parallel}Dy{\parallel}^{p-2}Dy{\rangle}+c(x)f(y)=0,\;p>1$$. The obtained theorems include and improve some existing ones for the undamped halflinear partial differential equation and the semilinear elliptic equation.

  • PDF

ON A CLASS OF QUASILINEAR ELLIPTIC EQUATION WITH INDEFINITE WEIGHTS ON GRAPHS

  • Man, Shoudong;Zhang, Guoqing
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.4
    • /
    • pp.857-867
    • /
    • 2019
  • Suppose that G = (V, E) is a connected locally finite graph with the vertex set V and the edge set E. Let ${\Omega}{\subset}V$ be a bounded domain. Consider the following quasilinear elliptic equation on graph G $$\{-{\Delta}_{pu}={\lambda}K(x){\mid}u{\mid}^{p-2}u+f(x,u),\;x{\in}{\Omega}^{\circ},\\u=0,\;x{\in}{\partial}{\Omega},$$ where ${\Omega}^{\circ}$ and ${\partial}{\Omega}$ denote the interior and the boundary of ${\Omega}$, respectively, ${\Delta}_p$ is the discrete p-Laplacian, K(x) is a given function which may change sign, ${\lambda}$ is the eigenvalue parameter and f(x, u) has exponential growth. We prove the existence and monotonicity of the principal eigenvalue of the corresponding eigenvalue problem. Furthermore, we also obtain the existence of a positive solution by using variational methods.

BOUNDARY BEHAVIOR OF LARGE SOLUTIONS FOR QUASILINEAR ELLIPTIC EQUATIONS

  • Sun, Juan;Yang, Zuodong
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.3_4
    • /
    • pp.969-980
    • /
    • 2011
  • In this paper, our main purpose is to consider the quasilinear elliptic equation $$div(|{\nabla}u|^{p-2}{\nabla}u)=(p-1)f(u)$$ on a bounded smooth domain ${\Omega}\;{\subset}\;R^N$, where p > 1, N > 1 and f is a smooth, increasing function in [0, ${\infty}$). We get some estimates of a solution u satisfying $u(x){\rightarrow}{\infty}$ as $d(x,\;{\partial}{\Omega}){\rightarrow}0$ under different conditions on f.

ON GROUND STATE SOLUTIONS FOR SINGULAR QUASILINEAR ELLIPTIC EQUATIONS

  • Yin, Honghui;Yang, Zuodong
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.3_4
    • /
    • pp.1011-1016
    • /
    • 2011
  • In this paper, our main purpose is to establish the existence of positive bounded entire solutions of second order quasilinear elliptic equation on $R^N$. we obtained the results under different suitable conditions on the locally H$\"{o}$lder continuous nonlinearity f(x, u), we needn't any mono-tonicity condition about the nonlinearity.

$\bar{WT}$-Classes of Differential Forms on Riemannian Manifolds

  • Hongya, Gao;Zhihua, Gu;Yuming, Chu
    • Kyungpook Mathematical Journal
    • /
    • v.48 no.1
    • /
    • pp.73-79
    • /
    • 2008
  • The purpose of this paper is to study the relations between quasilinear elliptic equations on Riemannian manifolds and differential forms. Two classes of differential forms are introduced and it is shown that some differential expressions are connected in a natural way to quasilinear elliptic equations.

ON THE MINIMAL ENERGY SOLUTION IN A QUASILINEAR ELLIPTIC EQUATION

  • Park, Sang-Don;Kang, Chul
    • Communications of the Korean Mathematical Society
    • /
    • v.18 no.1
    • /
    • pp.65-73
    • /
    • 2003
  • In this paper we seek a positive, radially symmetric and energy minimizing solution of an m-Laplacian equation, -div$($\mid${\nabla}u$\mid$^{m-2}$\mid${\nabla}u)\;=\;h(u)$. In the variational sense, the solutions are the critical points of the associated functional called the energy, $J(v)\;=\;\frac{1}{m}\;\int_{R^N}\;$\mid${\nabla}v$\mid$^m\;-\;\int_{R^N}\;H(v)dx,\;where\;H(v)\;=\;{\int_0}^v\;h(t)dt$. A positive, radially symmetric critical point of J can be obtained by solving the constrained minimization problem; minimize{$\int_{R^N}$\mid${\nabla}u$\mid$^mdx$\mid$\;\int_{R^N}\;H(u)d;=\;1$}. Moreover, the solution minimizes J(v).

LARGE SOLUTIONS OF QUASILINEAR ELLIPTIC EQUATION OF MIXED TYPE

  • Zhang, Yuan;Yang, Zuodong
    • Journal of applied mathematics & informatics
    • /
    • v.32 no.5_6
    • /
    • pp.721-736
    • /
    • 2014
  • We consider the equation ${\Delta}_mu=p(x)u^{\alpha}+q(x)u^{\beta}$ on $R^N(N{\geq}2)$, where p, q are nonnegative continuous functions and 0 < ${\alpha}{\leq}{\beta}$. Under several hypotheses on p(x) and q(x), we obtain existence and nonexistence of blow-up solutions both for the superlinear and sublinear cases. Existence and nonexistence of entire bounded solutions are established as well.

SELF-SIMILAR SOLUTIONS FOR THE 2-D BURGERS SYSTEM IN INFINITE SUBSONIC CHANNELS

  • Song, Kyung-Woo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.1
    • /
    • pp.29-37
    • /
    • 2010
  • We establish the existence of weak solutions in an infinite subsonic channel in the self-similar plane to the two-dimensional Burgers system. We consider a boundary value problem in a fixed domain such that a part of the domain is degenerate, and the system becomes a second order elliptic equation in the channel. The problem is motivated by the study of the weak shock reflection problem and 2-D Riemann problems. The two-dimensional Burgers system is obtained through an asymptotic reduction of the 2-D full Euler equations to study weak shock reflection by a ramp.

INFINITELY MANY SMALL SOLUTIONS FOR THE p(x)-LAPLACIAN OPERATOR WITH CRITICAL GROWTH

  • Zhou, Chenxing;Liang, Sihua
    • Journal of applied mathematics & informatics
    • /
    • v.32 no.1_2
    • /
    • pp.137-152
    • /
    • 2014
  • In this paper, we prove, in the spirit of [3, 12, 20, 22, 23], the existence of infinitely many small solutions to the following quasilinear elliptic equation $-{\Delta}_{p(x)}u+{\mid}u{\mid}^{p(x)-2}u={\mid}u{\mid}^{q(x)-2}u+{\lambda}f(x,u)$ in a smooth bounded domain ${\Omega}$ of ${\mathbb{R}}^N$. We also assume that $\{q(x)=p^*(x)\}{\neq}{\emptyset}$, where $p^*(x)$ = Np(x)/(N - p(x)) is the critical Sobolev exponent for variable exponents. The proof is based on a new version of the symmetric mountainpass lemma due to Kajikiya [22], and property of these solutions are also obtained.