
J. Appl. Math. & Informatics Vol. 32(2014), No. 1 - 2, pp. 137 - 152
http://dx.doi.org/10.14317/jami.2014.137

INFINITELY MANY SMALL SOLUTIONS FOR THE

p(x)-LAPLACIAN OPERATOR WITH CRITICAL GROWTH†

CHENXING ZHOU, SIHUA LIANG∗

Abstract. In this paper, we prove, in the spirit of [3, 12, 20, 22, 23],

the existence of infinitely many small solutions to the following quasilinear
elliptic equation −∆p(x)u+ |u|p(x)−2u = |u|q(x)−2u+λf(x, u) in a smooth

bounded domain Ω of RN . We also assume that {q(x) = p∗(x)} ̸= ∅, where

p∗(x) = Np(x)/(N − p(x)) is the critical Sobolev exponent for variable
exponents. The proof is based on a new version of the symmetric mountain-
pass lemma due to Kajikiya [22], and property of these solutions are also

obtained.
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Key words and phrases : p(x)-Laplacian, Generalized Lebesgue-Sobolev
spaces, Symmetric mountain-pass lemma, Concentration-compactness prin-
ciple.

1. Introduction

In this paper we deal with quasilinear elliptic problem of the form{
−∆p(x)u+ |u|p(x)−2u = |u|q(x)−2u+ λf(x, u), in Ω,

u = 0, on ∂Ω,
(1)

where Ω ⊂ RN (N ≥ 3) is a bounded domain with smooth boundary and
p(x), q(x) are two continuous functions on Ω, 1 < p(x) ≪ q(x) < N , where
denote by p(x) ≪ q(x) the fact that infx∈Ω(q(x) − p(x)) > 0. λ is a posi-
tive parameter, ∆p(x)u := div(|∇u|p(x)−2∇u) is the p(x)-Laplacia operator. On
the exponent q(x) we assume that is the critical exponent in the sense that
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{q(x) = p∗(x)} ̸= ∅, where p∗(x) = Np(x)/(N − p(x)) is the critical exponent
according to the Sobolev embedding. Our goal will be to obtain infinitely many
small weak solutions which tend to zero for (1) in the generalized Sobolev space

W
1,p(x)
0 (Ω) for the general nonlinearities of the type f(x, u).
The study of differential equations and variational problems involving vari-

able exponent conditions has been a very interesting and important topic. The
interest in studying such problems was stimulated by their applications in elas-
tic mechanics, fluid dynamics, image processing and so on. For example, Chen,
Levin and Rao [4] proposed the following model in image processing

F (u) =

∫
Ω

|∇u(x)|p(x)

p(x)
+ f(|u(x)− I(x)|)dx → min,

where p(x) is a function satisfies 1 ≤ p(x) ≤ 2 and f is a convex function.
For more information on modelling physical phenomena by equations involving
p(x)-growth condition we refer to [1, 19, 28, 30]. The appearance of such physi-
cal models was facilitated by the development of variable Lebesgue and Sobolev
spaces, Lp(x) and W 1,p(x), where p(x) is a real-valued function. On the variable
exponent Sobolev spaces which have been used to study p(x)-Laplacian prob-
lems, we refer to [5, 21, 29]. On the existence of solutions for elliptic equations
with variable exponent, we refer to [2, 6, 7, 8, 9, 10, 11, 16, 17, 31].

In recent years, the existence of infinitely many solutions have been obtained
by many papers. When p(x) ≡ p = 2 (a constant) with Dirichlet boundary
condition, Li and Zou [23] studied a class of elliptic problems with critical ex-
ponents, they obtained the existence theorem of infinitely many solutions under
suitable hypotheses. He and Zou [20] proved that the existence infinitely many
solutions under case the general nonlinearities. When p(x) ≡ p ̸= 2. Ghoussoub
and Yuan [18] obtained the existence of infinitely many nontrivial solutions for
Hardy-Sobolev subcritical case and Hardy critical case by establishing Palais-
Smale type conditions around appropriate chosen dual sets in bounded domain.
Li and Zhang [24] studied the existence of multiple solutions for the nonlinear
elliptic problems of p&q-Laplacian type involving the critical Sobolev exponent,
they obtained infinitely many weak solutions by using Lusternik-Schnirelman’s
theory for Z2-invariant functional.

On the existence of infinitely many solutions for p(x)-Laplacian problems have
been studied by [2, 7, 9, 31], but they did not give any further information on
the sequence of solutions. Moreover, these papers deal with subcritical nonlin-
earities. Very little is known about critical growth nonlinearities for variable
exponent problems [14, 15], since one of the main techniques used in order to
deal with such issues is the concentration-compactness principle. This result was
recently obtained for the variable exponent case independently in [12, 13]. In
both of these papers the proof are similar and both relates to that of the original
proof of P.L. Lions [25, 26].

Recently, Kajikiya [22] established a critical point theorem related to the sym-
metric mountain pass lemma and applied to a sublinear elliptic equation. But
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there are no such results on p(x)-Laplacian problem with critical growth (1).
Motivated by reasons above, the aim of this paper is to show that the exis-

tence of infinitely many solutions of problem (1), and there exists a sequence
of infinitely many arbitrarily small solutions converging to zero by using a new
version of the symmetric mountain-pass lemma due to Kajikiya [22]. In order to
use the symmetric mountain-pass lemma, there are many difficulties. The main
one in solving the problem is a lack of compactness which can be illustrated
by the fact that the embedding of W 1,p(x)(Ω) into Lp∗(x)(Ω) is no longer com-
pact. Hence the concentration-compactness principle is used here to overcome
the difficulty. The main result of this paper is as follows.

Theorem 1.1. Suppose that f(x, u) satisfies the following conditions:

(H1) f(x, u) ∈ C(Ω×R,R), f(x,−u) = −f(x, u) for all u ∈ R;

(H2) lim|u|→∞
f(x,u)

|u|q(x)−1 = 0 uniformly for x ∈ Ω;

(H3) lim|u|→0+
f(x,u)

up−−1
= ∞ uniformly for x ∈ Ω.

Then there exists λ∗ such that for any λ ∈ (0, λ∗), problem (1) has a sequence
of non-trivial solutions {un} and un → 0 as n → ∞.

Remark 1.1. If without the symmetry condition (i.e. f(x,−u) = −f(x, u)) in
Theorem 1.1, we get an existence theorem of at least one nontrivial solution to
problem (1) by the same method in this paper.

Remark 1.2. In this paper, we use concentration-compactness principle due to
[12] which is slightly more general than those in [13], since we do not require
q(x) to be critical everywhere.

Remark 1.3. There exist many functions f(x, t) satisfy condition (H1)-(H3),

for example, f(x, u) = u(p−−1)/3, where p− > 1.

Remark 1.4. Theorem 1.1 is new as far as we know and it generalizes results
in [3] for p(x)-Laplacian type problem. We mainly follow the way in [3] to prove
our main result.

Definition 1.2. We say that u0 ∈ W
1,p(x)
0 (Ω) is a weak solution of problem

(1) if for any v ∈ W
1,p(x)
0 (Ω)∫

Ω

(
|∇u0|p(x)−2∇u0 · ∇v + |u0|p(x)−2u0v

)
dx−

∫
Ω

|u0|q(x)−2u0vdx

− λ

∫
Ω

f(x, u0)vdx = 0.

The energy functional corresponding to problem (1) is defined as follows,

J(u) =

∫
Ω

|∇u|p(x) + |u|p(x)

p(x)
dx−

∫
Ω

1

q(x)
|u|q(x)dx− λ

∫
Ω

F (x, u)dx,

then, it is easy to check that as arguments [27] show that J(u) is well defined

on W
1,p(x)
0 (Ω) and J ∈ C1(W

1,p(x)
0 (Ω),R) and the weak solutions for problem
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(1) coincides with the critical points of J . We try to use a new version of the
symmetric mountain-pass lemma due to Kajikiya [22]. But since the functional
J(u) is not bounded from below, we could not use the theory directly. So we
follow [3] to consider a truncated functional of J(u). Denote J ′ : E → E∗ is the
derivative operator of J in the weak sense. Then

⟨J ′(u), v⟩ =

∫
Ω

(
|∇u|p(x)−2∇u · ∇v + |u|p(x)−2uv

)
dx−

∫
Ω

|u|q(x)−2uvdx

− λ

∫
Ω

f(x, u)vdx, ∀ u, v ∈ W
1,p(x)
0 (Ω).

Definition 1.3. We say J satisfies Palais-Smale condition ((PS) for short) in

W
1,p(x)
0 (Ω), if any sequence {un} ⊂ W

1,p(x)
0 (Ω) which satisfies that {J(un)} is

bounded and ∥J ′(un)∥p(x) → 0 as n → ∞, has a convergent subsequence.

Under assumption (H2), we have

f(x, u)u = o
(
|u|q(x)

)
, F (x, u) = o

(
|u|q(x)

)
,

which means that, for all ε > 0, there exist a(ε), b(ε) > 0 such that

|f(x, u)u| ≤ a(ε) + ε|u|q(x), (2)

|F (x, u)| ≤ b(ε) + ε|u|q(x). (3)

Hence, for any constants β we have

|F (x, u)− βf(x, u)u| ≤ c(ε) + ε|u|q(x), (4)

for some c(ε) > 0.
The remainder of the paper is organized as follows. In Section 2, we shall

present some basic properties of the variable exponent Sobolev spaces. In Section
3, we will prove the corresponding energy functional satisfies the (PS) condition.
In Section 4, we shall prove our main results.

2. Weighted variable exponent Lebesgue and Sobolev spaces

We recall some definitions and properties of the variable exponent Lebesgue-
Sobolev spaces Lp(·)(Ω) and W 1,p(·)(Ω), where Ω is a bounded domain in RN .
Set

C+(Ω) = {h ∈ C(Ω) : min
x∈Ω

h(x) > 1}.

For any h ∈ C+(Ω) we define

h+ = sup
x∈Ω

h(x) and h− = inf
x∈Ω

h(x).

We can introduce the variable exponent Lebesgue space as follows:

Lp(·)(Ω) =
{
u : u is a measurable real-valued function

such that

∫
Ω

|u(x)|p(x) dx < ∞
}
,
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for p ∈ C+(Ω). Equipping with the norm on Lp(x)(Ω) by

|u|p(·) = inf
{
µ > 0 :

∫
Ω

|u(x)
µ

|p(x) dx ≤ 1
}
,

which is a Banach space, we call it a generalized Lebesgue space.

Proposition 2.1 ([5, 11]). (i) The space (Lp(x)(Ω), | · |p(x)) is a separable, uni-

form convex Banach space, and its conjugate space is Lq(x)(Ω), where 1/q(x) +
1/p(x) = 1. For any u ∈ Lp(x)(Ω) and v ∈ Lq(x)(Ω), we have∣∣ ∫

Ω

uv dx
∣∣ ≤ ( 1

p−
+

1

q−

)
|u|p(·)|v|q(·); (5)

(ii) If 0 < |Ω| < ∞ and p1, p2 are variable exponents in C+(Ω) such that p1 ≤ p2
in Ω, then the embedding Lp2(·)(Ω) ↪→ Lp1(·)(Ω) is continuous.

Proposition 2.2 ([5, 11]). The mapping ρp(·) : L
p(·)(Ω) → R defined by

ρp(·)(u) =

∫
Ω

|u|p(x) dx.

Then the following relations hold:

|u|p(·) < 1 (= 1; > 1) ⇔ ρp(·)(u) < 1 (= 1; > 1),

|u|p(·) > 1 ⇒ |u|p
−

p(·) ≤ ρp(·)(u) ≤ |u|p
+

p(·),

|u|p(·) < 1 ⇒ |u|p
+

p(·) ≤ ρp(·)(u) ≤ |u|p
−

p(·),

|un − u|p(·) → 0 ⇔ ρp(·)(un − u) → 0.

Next, we define W 1,p(x)(Ω) is defined by

W 1,p(x)(Ω) := {u ∈ Lp(x)(Ω) | |∇u| ∈ Lp(x)(Ω)}
and it can be equipped with the norm

∥u∥ = |u|p(x) + |∇u|p(x), ∀ u ∈ W 1,p(x)(Ω).

Denote W
1,p(x)
0 (Ω) as the closure of C∞

0 (Ω) under the norm

∥u∥1 = |∇u|p(x).

We know that if Ω ⊂ RN is a bounded domain, ∥u∥ and ∥u∥1 are equivalent

norms on W
1,p(x)
0 (Ω).

Proposition 2.3 ([5, 11]). (i) W 1,p(x)(Ω) are separable reflexive Banach spaces;
(ii) If p ∈ C+(Ω) and p(x) ≤ q(x) ≤ p∗(x) for all x ∈ Ω then the embedding
W 1,p(x)(Ω) ↪→ Lq(x)(Ω) is continuous.

In this paper, we use the following equivalent norm on W 1,p(x)(Ω):

∥u∥p(·) = inf
{
µ > 0 :

∫
Ω

∣∣∣∣∇u

µ

∣∣∣∣p(x) + ∣∣∣∣uµ
∣∣∣∣p(x) dx ≤ 1

}
. (6)
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Proposition 2.4 ([21, 6]). Let I(u) =
∫
Ω
|∇u|p(x) + |u|p(x)dx. If u, un ∈

W 1,p(x)(Ω), then the following relations hold:

∥u∥p(·) < 1 (= 1; > 1) ⇔ I(u) < 1 (= 1; > 1), (7)

∥u∥p(·) > 1 ⇒ ∥u∥p
−

p(·) ≤ I(u) ≤ ∥u∥p
+

p(·), (8)

∥u∥p(·) < 1 ⇒ ∥u∥p
+

p(·) ≤ I(u) ≤ ∥u∥p
−

p(·), (9)

∥un − u∥p(·) → 0 ⇔ I(un − u) → 0. (10)

3. Preliminaries and lemmas

In the following, we always use C and ci(i = 1, 2, · · · ) to denote positive con-
stants. We give the concentration-compactness principle of the variable exponent
due to [12, 15].

Lemma 3.1. Let q(x) and p(x) be two continuous functions such that

1 < inf
x∈Ω

p(x) ≤ sup
x∈Ω

p(x) < N and 1 ≤ q(x) ≤ p∗(x) in Ω.

Let {uj}j∈N be a weakly convergent sequence in W
1,p(x)
0 (Ω) with weak limit u,

and such that |∇uj |p(x) ⇀ µ weakly-∗ in the sense of measures; |uj |q(x) ⇀ ν
weakly-∗ in the sense of measures. Assume, moreover that Γ = {x ∈ Ω : q(x) =
p∗(x)} ̸= ∅. Then, for some countable index set I we have
(i) ν = |u|q(x) +Σi∈Iνiδxi , νi > 0;
(ii) µ ≥ |∇u|p(x) +Σi∈Iµiδxi , µi > 0;

(iii) Sν
1/p∗(xi)
i ≤ µ

1/p(xi)
i , ∀ i ∈ I;

where {xi}i∈I ⊂ Γ and S is the best constant in the Gagliardo-Nirenberg-Sobolev
inequality for variable exponents, namely

S = Sq(Ω) := inf
ϕ∈C∞

0 (Ω)

∥|∇ϕ|∥Lp(x)(Ω)

∥ϕ∥Lq(x)(Ω)

.

In order to prove the functional J satisfies the local (PS)c condition, we take
continuous function η(x) satisfies p(x) ≪ η(x) ≪ q(x), ∀x ∈ Ω. Denote

d1 := inf
x∈Ω

(
1

p(x)
− 1

η(x)

)
> 0, (11)

d2 := inf
x∈Ω

(
1

η(x)
− 1

q(x)

)
> 0. (12)

Lemma 3.2. Assume condition (H2) holds. Then for any λ > 0, there exists
positive constant m∗ > 0 such that the functional J satisfies the local (PS)c
condition in

c ∈
(
−∞,

d2
4

· SN −m∗
)
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in the following sense: if

J(un) → c <
d2
4

· SN −m∗

and J ′(un) → 0 for some sequence in W
1,p(x)
0 (Ω). Then {un} contains a subse-

quence converging strongly in W
1,p(x)
0 (Ω).

Proof. First, we show that {un} is bounded in W
1,p(x)
0 (Ω). If ∥un∥p(x) → ∞ as

n → ∞. Thus, we may assume that ∥un∥p(x) > 1 for any integer n.
Then for n sufficiently large, we have

M + o(1)∥un∥p(x)

≥ J(un)− ⟨J ′(un),
un

η
⟩

=

∫
Ω

( 1

p(x)
− 1

η(x)

)
·
(
|∇un|p(x) + |un|p(x)

)
dx+

∫
Ω

( 1

η(x)
− 1

q(x)

)
· |un|q(x)dx

− λ

∫
Ω

[
F (x, un)−

1

η(x)
f(x, un)un

]
dx+

∫
Ω

|∇un|p(x)−2∇unun∇η

η2(x)
dx

≥ d1 ·
∫
Ω

(
|∇un|p(x) + |un|p(x)

)
dx+ d2 ·

∫
Ω

|un|q(x)dx

− λ

∫
Ω

[
F (x, un)−

1

η(x)
f(x, un)un

]
dx+

∫
Ω

|∇un|p(x)−2∇unun∇η

η2(x)
dx. (13)

By (4), for any (x, t) ∈ Ω× R, we have∫
Ω

[
F (x, un)−

1

η(x)
f(x, un)un

]
dx

≤
∫
Ω

∣∣∣∣F (x, un)−
1

η(x)
f(x, un)un

∣∣∣∣ dx
≤
∫
Ω

max

{∣∣∣∣F (x, un)−
1

η+
f(x, un)un

∣∣∣∣ , ∣∣∣∣F (x, un)−
1

η−
f(x, un)un

∣∣∣∣} dx

≤ c(ε1)|Ω|+ ε1

∫
Ω

|un|q(x)dx. (14)

On the other hand, noting that p(x) ≪ q(x), by the Young inequality, for any
ε2, ε3 ∈ (0, 1), we get∣∣∣∣ |∇un|p(x)−2∇unun∇η

η2(x)

∣∣∣∣ ≤ c1|∇un|p(x)−1|un|

≤ c1

(
ε2(p(x)− 1)

p(x)
|∇un|p(x) +

ε
1−p(x)
2

p(x)
|un|p(x)

)
≤ c1

(
ε2|∇un|p(x) + ε1−p+

2 |un|p(x)
)

(15)
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and

|un|p(x) ≤
ε3p(x)

q(x)
|un|q(x) +

q(x)− p(x)

q(x)
ε

p(x)
p(x)−q(x)

3

≤ ε3|un|q(x) + ε
− p+

(q−p)−

3 . (16)

Thus, relations (13)-(16) imply that

M + o(1)∥un∥p(x)

≥ (d1 − c1ε2)

∫
Ω

(
|∇un|p(x) + |un|p(x)

)
dx+

(
d2 − λε1 − c1ε

1−p+

2 ε3
)∫

Ω

|un|q(x)dx

− c1ε
1−p+

2 ε
− p+

(q−p)−
3 − λc(ε1)|Ω|

= (d1 − c1ε2)

∫
Ω

(
|∇un|p(x) + |un|p(x)

)
dx+

(
d2
2

− c1ε
1−p+

2 ε3

)∫
Ω

|un|q(x)dx

− c1ε
1−p+

2 ε
− p+

(q−p)−
3 − λc(

d2
2λ

)|Ω|, (17)

where ε1 = d2

2λ . Thus, we choose ε2, ε3 be so small that d1 − c1ε2 > 0 and
d2

2 − c1ε
1−p+

2 ε3 > 0. It follows from (8) and (17) that {un} is bounded in

W
1,p(x)
0 (Ω). Therefore we can assume that

|un|q(x) ⇀ ν = |u|q(x) +
∑
i∈I

νiδxi , νi > 0, (18)

|∇un|p(x) ⇀ µ ≥ |∇u|p(x) +
∑
i∈I

µiδxi , µi > 0, (19)

Sν
1/p∗(xi)
i ≤ µ

1/p(xi)
i . (20)

Note that if I = ∅ then un → u strongly in Lq(x)(Ω). If not, let xi be a
singular point of the measures µ and ν, define a function ϕ(x) ∈ C∞

0 (Ω) such
that ϕ(x) = 1 in B(xi, ε), ϕ(x) = 0 in Ω \ (xi, 2ε) and |∇ϕ| ≤ 2/ε in Ω. As

J ′(un) → 0 in (W
1,p(x)
0 (Ω))′, we obtain that

lim
n→∞

⟨J ′(un), ϕun⟩ → 0,

i.e.

lim
n→∞

{∫
Ω

|∇un|p(x)−2∇un · ∇(ϕun)dx+

∫
Ω

|un|p(x)−2unϕundx

−
∫
Ω

|un|q(x)−2unϕundx− λ

∫
Ω

f(x, un)ϕundx

}
= 0.

On the other hand, by Hölder inequality and boundedness of {un}, we have that

0 ≤ lim
ε→0

lim
n→∞

∣∣∣∣∫
Ω

un|∇un|p(x)−2∇un∇ϕdx

∣∣∣∣
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≤ C lim
ε→0

lim
n→∞

(∫
Ω

|un|p(x)|∇ϕ|p(x)dx
) 1

p(x)
(∫

Ω

|∇un|p(x)dx
) p(x)−1

p(x)

≤ C lim
ε→0

(∫
B(xi,ε)

|u|p(x)|∇ϕ|p(x)dx

) 1
p(x)

≤ C lim
ε→0

(∫
B(xi,ε)

|∇ϕ|Ndx

) 1
N
(∫

B(xi,ε)

|u|p
∗(x)dx

) 1
p∗(x)

= 0. (21)

From (18), (19) and (21), we get that

0 = lim
ε→0

[∫
Ω

ϕdµ−
∫
Ω

ϕdν − λ

∫
Ω

f(x, un)unϕdx

]
= µi − νi. (22)

Combing this with Lemma 2.1 (iii), we obtain ν
1

p(xi)

i ≥ Sν
1

p∗(xi)

i . This result
implies that

νi = 0 or νi ≥ SN .

If the second case νi ≥ SN holds, for some i ∈ I, then by using Lemma 2.1 and

selecting ε2, ε3 in (17) such that d1 − c1ε2 > d1

2 and d2

2 − c1ε
1−p+

2 ε3 > d2

4 , we
have

c = lim
n→∞

(
J(un)− ⟨J ′(un),

un

η
⟩
)

≥ d2
4

·
∫
Ω

|un|q(x)dx− c1ε
1−p+

2 ε
− p+

(q−p)−

3 − c(
d2
2λ

)|Ω|

=
d2
4

·
∫
Ω

dν − c1ε
1−p+

2 ε
− p+

(q−p)−

3 − c(
d2
2λ

)|Ω|

≥ d2
4

·
∫
Ω

|u|q(x)dx+
d2
4

· SN − c1ε
1−p+

2 ε
− p+

(q−p)−

3 − c(
d2
2λ

)|Ω|

≥ d2
4

· SN − c1ε
1−p+

2 ε
− p+

(q−p)−

3 − c(
d2
2λ

)|Ω|

=
d2
4

· SN −m∗,

where m∗ = c1ε
1−p+

2 ε
− p+

(q−p)−

3 + c( d2

2λ )|Ω|. This is impossible. Consequently,
νi = 0 for all i ∈ I and hence∫

Ω

|un|q(x)dx →
∫
Ω

|u|q(x)dx.

Since {un} is bounded in W
1,p(x)
0 (Ω) we deduce that there exists a subse-

quence, again denoted by {un}, and W
1,p(x)
0 (Ω) such that {un} converges weakly
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to W
1,p(x)
0 (Ω). Note that

⟨J ′(un)− J ′(u0), un − u0⟩ → 0 as n → ∞.

On the other hand, we have∫
Ω

(|∇un|p(x)−2∇un − |∇u0|p(x)−2∇u0) · (∇un −∇u0)dx

+

∫
Ω

(|un|p(x)−2un − |u0|p(x)−2u0)(un − u0)dx

= ⟨J ′(un)− J ′(u0), un − u0⟩+
∫
Ω

(|un|q(x)−2un − |u0|q(x)−2u0)(un − u0)dx

+ λ

∫
Ω

(f(x, un)− f(x, u0))(un − u0)dx.

Using the fact that {un} converges strongly to u0 in Lq(x)(Ω) and inequality (5),
we have ∣∣ ∫

Ω

(f(x, un)− f(x, u0))(un − u0)dx
∣∣

≤
∣∣ ∫

Ω

|f(x, un)|(un − u0)dx
∣∣+ ∣∣ ∫

Ω

|f(x, u0)|(un − u0)dx
∣∣

≤
∣∣ ∫

Ω

a(ε)(un − u0)dx
∣∣+ ε

∣∣ ∫
Ω

|un|q(x)−1(un − u0)dx
∣∣

+
∣∣ ∫

Ω

a(ε)(un − u0)dx
∣∣+ ε

∣∣ ∫
Ω

|u0|q(x)−1(un − u0)dx
∣∣

≤ c1 · |un − u0|q(x) + c2 · ∥un|q(x)−1| q(x)
q(x)−1

· |un − u0|q(x)

+ c3 · ∥u0|q(x)−1| q(x)
q(x)−1

· |un − u0|q(x),

where c1 c2 and c3 are positive constants. Using |un − u0|q(x) → 0 as n → ∞,
we deduce that

lim
n→∞

∫
Ω

(f(x, un)− f(x, u0))(un − u0)dx = 0, (23)

lim
n→∞

∫
Ω

(|un|q(x)−2un − |u0|q(x)−2u0)(un − u0)dx = 0. (24)

By (23) and (24), we obtain∫
Ω

(|∇un|p(x)−2∇un − |∇u0|p(x)−2∇u0) · (∇un −∇u0)dx

+

∫
Ω

(|un|p(x)−2un − |u0|p(x)−2u0)(un − u0)dx = 0. (25)

It is known that(
|s|p−2s− |t|p−2t, s− t

)
≥

{
Cp|s− t|p, ∀ p ≥ 2,

Cp
|s−t|2

(|s|+|t|)2−p , ∀ p ≤ 2,
s, t ∈ RN , (26)
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where (· , ·) is the standard scalar product in RN . Relations (25) and (26) yield

lim
n→∞

∫
Ω

(
|∇un −∇u0|p(x) + |un − u0|p(x)

)
dx = 0.

This fact and relation (10) imply ∥un − u0∥p(x) → 0 as n → ∞. The proof is
complete. �

4. Existence of a sequence of arbitrarily small solutions

In this section, we prove the existence of infinitely many solutions of (1) which
tend to zero. Let X be a Banach space and denote

Σ := {A ⊂ X \ {0} : A is closed in X and symmetric with respect to the orgin} .
For A ∈ Σ, we define genus γ(A) as

γ(A) := inf{m ∈ N : ∃ φ ∈ C(A,Rm \ {0}),−φ(x) = φ(−x)}.
If there is no mapping φ as above for any m ∈ N , then γ(A) = +∞. Let Σk

denote the family of closed symmetric subsets A of X such that 0 ̸∈ A and
γ(A) ≥ k. We list some properties of the genus (see [22]).

Proposition 4.1. Let A and B be closed symmetric subsets of X which do not
contain the origin. Then the following hold.

(1) If there exists an odd continuous mapping from A to B, then γ(A) ≤
γ(B);

(2) If there exists an odd homeomorphism from A to B, then γ(A) = γ(B);

(3) If γ(B) < ∞, then γ(A \B) ≥ γ(A)− γ(B);
(4) Then n-dimensional sphere Sn has a genus of n+1 by the Borsuk-Ulam

Theorem;
(5) If A is compact, then γ(A) < +∞ and there exists δ > 0 such that

Uδ(A) ∈ Σ and γ(Uδ(A)) = γ(A), where Uδ(A) = {x ∈ X : ∥x − A∥ ≤
δ}.

The following version of the symmetric mountain-pass lemma is due to Ka-
jikiya [22].

Lemma 4.2. Let E be an infinite-dimensional space and J ∈ C1(E,R) and
suppose the following conditions hold.

(C1) J(u) is even, bounded from below, J(0) = 0 and J(u) satisfies the Palais-
Smale condition;

(C2) For each k ∈ N , there exists an Ak ∈ Σk such that supu∈Ak
J(u) < 0.

Then either (R1) or (R2) below holds.

(R1) There exists a sequence {uk} such that J ′(uk) = 0, J(uk) < 0 and {uk}
converges to zero.

(R2) There exist two sequences {uk} and {vk} such that J ′(uk) = 0, J(uk) <
0, uk ̸= 0, limk→∞ uk = 0, J ′(vk) = 0, J(vk) < 0, limk→∞ vk = 0, and
{vk} converges to a non-zero limit.
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Remark 4.1. From Lemma 4.2 we have a sequence {uk} of critical points such
that J(uk) ≤ 0, uk ̸= 0 and limk→∞ uk = 0.

In order to get infinitely many solutions we need some lemmas. We first point
out that we have

∥u(x)∥q
−

p(x) + ∥u(x)∥q
+

p(x) ≥ ∥u(x)∥q(x)p(x), ∀x ∈ Ω. (27)

Proposition 2.3 (ii) imply that

|u(x)|q(x) ≤ c4∥u(x)∥p(x), ∀x ∈ Ω, (28)

where c4 > 0.

Next, we focus our attention on the case when u ∈ W
1,p(x)
0 (Ω) with ∥u∥p(x) < 1.

For such a u by relation (9) we obtain∫
Ω

|∇u|p(x) + |u|p(x)dx ≥ ∥u∥p
+

p(x). (29)

Using (3) and (27)-(29), we deduce that

J(u) =

∫
Ω

|∇u|p(x) + |u|p(x)

p(x)
dx−

∫
Ω

1

q(x)
|u|q(x)dx− λ

∫
Ω

F (x, u)dx

≥ 1

p+
·
∫
Ω

|∇u|p(x) + |u|p(x)dx− 1

q−
·
∫
Ω

|u|q(x)dx− λb(ε)|Ω| − λε

∫
Ω

|u|q(x)dx

=
1

p+
·
∫
Ω

|∇u|p(x) + |u|p(x)dx− 2

q−
·
∫
Ω

|u|q(x)dx− λb(
1

q−λ
)|Ω|

≥ 1

2p+
· ∥u∥p

+

p(x) −
2c4
q−

· ∥u∥q
+

p(x) −
2c4
q−

· ∥u∥q
−

p(x) − λb(
1

q−λ
)|Ω|

≥ A∥u∥p
+

p(x) −B∥u∥q
+

p(x) − λC, (30)

where ε = 1
q−λ , A = 1

2p+ , B = 2c4
q− , C = 2c4

q−λ +b( 1
q−λ )|Ω|, for any u ∈ W

1,p(x)
0 (Ω)

with ∥u∥p(x) < 1. If we define

Q(s) = Asp
+

−Bsq
+

− λC.

Then

J(u) ≥ Q(∥u∥p(x)).

From the definition of Q(s) and the fact that p+ < q+, we konw that there exists
λ∗ such that for λ ∈ (0, λ∗), Q(t) attains its positive maximum, that is, there
exists

R1 =

(
p+A

q+B

)1/(q+−p+)

such that

e1 = Q(R1) = max
t≥0

Q(t) > 0.
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Therefore, for e0 ∈ (0, e1), we may find R0 < R1 such that Q(R0) = e0. Now we
define

χ(t) =


1, 0 ≤ t ≤ R0,

Atp
+
−λC−e1
Btq+

, t ≥ R1,

C∞, χ(t) ∈ [0, 1], R0 ≤ t ≤ R1.

Then it is easy to see χ(t) ∈ [0, 1] and χ(t) is C∞. Let φ(u) = χ(∥u∥p(x)) and
consider the perturbation of J(u):

G(u) =

∫
Ω

|∇u|p(x) + |u|p(x)

p(x)
dx− φ(u)

∫
Ω

1

q(x)
|u|q(x)dx

−λφ(u)

∫
Ω

F (x, u)dx. (31)

Then

G(u) ≥ A∥u∥p
+

p(x) −Bφ(u)∥u∥q
+

p(x) − λC

= Q(∥u∥p(x)),

where Q(t) = Atp
+ −Bχ(t)tq

+ − λC and

Q(t) =

{
Q(t), t ≤ R0,

e1, t ≥ R1.

From the above arguments, we have the following:

Lemma 4.3. Let G(u) be defined as in (31). Then

(i) G ∈ C1(E,R) and G is even and bounded from below;
(ii) If G(u) < e0, then Q(∥u∥p(x)) < e0, consequently, ∥u∥p(x) < R0 and

J(u) = G(u);
(iii) There exist m∗ > 0 such that SN − m∗ > 0, and λ∗ such that for

λ ∈ (0, λ∗), G satisfies a local (PS)c condition
for c < e0 ∈

(
0,min

{
e1,

d2

4 · SN −m∗}).
Proof. It is easy to see (i) and (ii). (iii) are consequences of (ii) and Lemma
3.2. �

Lemma 4.4. Assume that (H3) of Theorem 1.1 holds. Then for any k ∈ N ,

there exists δ = δ(k) > 0 such that γ({u ∈ W
1,p(x)
0 (Ω) : G(u) ≤ −δ(k)} \ {0}) ≥

k.

Proof. First, by (H3) of Theorem 1.1, for any fixed u ∈ W
1,p(x)
0 (Ω), u ̸= 0, we

have
F (x, ρu) ≥ M(ρ)(ρu)p

−
with M(ρ) → ∞ as ρ → 0. (32)

Next, given any k ∈ N , let Ek be a k-dimensional subspace of W
1,p(x)
0 (Ω). We

take u ∈ Ek with norm ∥u∥p(x) = 1, for 0 < ρ < min{R0, 1}, we get

G(ρu) = J(ρu)
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=

∫
Ω

ρp(x)
|∇u|p(x) + |u|p(x)

p(x)
dx−

∫
Ω

ρq(x)
1

q(x)
|u|q(x)dx

−λ

∫
Ω

F (x, ρu)dx

≤ 1

p−
ρp

−
∫
Ω

|∇u|p(x) + |u|p(x)dx

− 1

q+
ρq

+

∫
Ω

|u|q(x)dx− λM(ρ)ρp
−
∫
Ω

|u|p
−
dx.

Since Ek is a space of finite dimension, all the norms in Ek are equivalent. If we
define

Ak = inf

{∫
Ω

|u|q(x)dx : u ∈ Ek, ∥u∥p(x) = 1

}
> 0,

Bk = inf

{∫
Ω

|u|p
−
dx : u ∈ Ek, ∥u∥p(x) = 1

}
> 0.

It follows from (32)that

G(ρu) ≤ 1

p−
ρp

−
− 1

q+
ρq

+

Ak − λM(ρ)ρp
−
Bk

≤ ρp
−
(

1

p−
− λM(ρ)Bk

)
− 1

q+
ρq

+

Ak

= −δ(k) < 0, as ρ → 0,

since lim|ρ|→0 M(ρ) = +∞. That is,

{u ∈ Ek : ∥u∥p(x) = ρ} ⊂ {u ∈ W
1,p(x)
0 (Ω) : G(u) ≤ −δ(k)} \ {0}.

This completes the proof. �

Now we give the proof of Theorem 1.1.

Proof of Theorem 1.1 Recall that

Σk = {A ∈ E \ {0} : A is closed and A = −A, γ(A) ≥ k}

and define

ck = inf
A∈Σk

sup
u∈A

G(u).

By Lemmas 4.3 (i) and 4.4, we know that −∞ < ck < 0. Therefore, assumptions
(C1) and (C2) of Lemma 4.2 are satisfied. This means that G has a sequence of
solutions {un} converging to zero. Hence, Theorem 1.1 follows by Lemma 4.3
(ii). �
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