• Title/Summary/Keyword: quasi-Lipschitz mapping

Search Result 10, Processing Time 0.671 seconds

NON-CONVEX HYBRID ALGORITHMS FOR A FAMILY OF COUNTABLE QUASI-LIPSCHITZ MAPPINGS CORRESPONDING TO KHAN ITERATIVE PROCESS AND APPLICATIONS

  • NAZEER, WAQAS;MUNIR, MOBEEN;NIZAMI, ABDUL RAUF;KAUSAR, SAMINA;KANG, SHIN MIN
    • Journal of applied mathematics & informatics
    • /
    • v.35 no.3_4
    • /
    • pp.313-321
    • /
    • 2017
  • In this note we establish a new non-convex hybrid iteration algorithm corresponding to Khan iterative process [4] and prove strong convergence theorems of common fixed points for a uniformly closed asymptotically family of countable quasi-Lipschitz mappings in Hilbert spaces. Moreover, the main results are applied to get the common fixed points of finite family of quasi-asymptotically nonexpansive mappings. The results presented in this article are interesting extensions of some current results.

MULTIVALUED MIXED QUASI-VARIATIONAL-LIKE INEQUALITIES

  • Lee Byung-Soo
    • The Pure and Applied Mathematics
    • /
    • v.13 no.3 s.33
    • /
    • pp.197-206
    • /
    • 2006
  • This paper introduces a class of multivalued mixed quasi-variational-like ineqcalities and shows the existence of solutions to the class of quasi-variational-like inequalities in reflexive Banach spaces.

  • PDF

GENERALIZED NONLINEAR MULTIVALUED MIXED QUASI-VARIATIONAL-LIKE INEQUALITIES

  • Lee, Byung-Soo;Khan M. Firdosh;Salahuddin Salahuddin
    • Communications of the Korean Mathematical Society
    • /
    • v.21 no.4
    • /
    • pp.689-700
    • /
    • 2006
  • In this paper, we introduce a new class of generalized nonlinear multivalued mixed quasi-variational-like inequalities and prove the existence and uniqueness of solutions for the class of generalized nonlinear multivalued mixed quasi-variational-like inequalities in reflexive Banach spaces using Fan-KKM Theorem.

ON GENERALIZED NONLINEAR QUASI-VARIATIONAL-LIKE INCLUSIONS DEALING WITH (h,η)-PROXIMAL MAPPING

  • Liu, Zeqing;Chen, Zhengsheng;Shim, Soo-Hak;Kang, Shin-Min
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.5
    • /
    • pp.1323-1339
    • /
    • 2008
  • In this paper, a new class of $(h,{\eta})$-proximal for proper functionals in Hilbert spaces is introduced. The existence and Lip-schitz continuity of the $(h,{\eta})$-proximal mappings for proper functionals are proved. A class of generalized nonlinear quasi-variational-like inclusions in Hilbert spaces is introduced. A perturbed three-step iterative algorithm with errors for the generalized nonlinear quasi-variational-like inclusion is suggested. The existence and uniqueness theorems of solution for the generalized nonlinear quasi-variational-like inclusion are established. The convergence and stability results of iterative sequence generated by the perturbed three-step iterative algorithm with errors are discussed.

A HYBRID METHOD FOR A COUNTABLE FAMILY OF LIPSCHITZ GENERALIZED ASYMPTOTICALLY QUASI-NONEXPANSIVE MAPPINGS AND AN EQUILIBRIUM PROBLEM

  • Cholamjiak, Prasit;Cholamjiak, Watcharaporn;Suantai, Suthep
    • Communications of the Korean Mathematical Society
    • /
    • v.28 no.2
    • /
    • pp.335-351
    • /
    • 2013
  • In this paper, we introduce a new iterative scheme for finding a common element of the fixed points set of a countable family of uniformly Lipschitzian generalized asymptotically quasi-nonexpansive mappings and the solutions set of equilibrium problems. Some strong convergence theorems of the proposed iterative scheme are established by using the concept of W-mappings of a countable family of uniformly Lipschitzian generalized asymptotically quasi-nonexpansive mappings.

CONVERGENCE THEOREMS OF A FINITE FAMILY OF ASYMPTOTICALLY QUASI-NONEXPANSIVE TYPE MAPPINGS IN BANACH SPACES

  • Saluja, Gurucharan Singh
    • East Asian mathematical journal
    • /
    • v.27 no.1
    • /
    • pp.35-49
    • /
    • 2011
  • In this paper, we study multi-step iterative algorithm with errors and give the necessary and sufficient condition to converge to com mon fixed points for a finite family of asymptotically quasi-nonexpansive type mappings in Banach spaces. Also we have proved a strong convergence theorem to converge to common fixed points for a finite family said mappings on a nonempty compact convex subset of a uniformly convex Banach spaces. Our results extend and improve the corresponding results of [2, 4, 7, 8, 9, 10, 12, 15, 20].

PARAMETRIC GENERALIZED MULTI-VALUED NONLINEAR QUASI-VARIATIONAL INCLUSION PROBLEM

  • Khan, F.A.;Alanazi, A.M.;Ali, Javid;Alanazi, Dalal J.
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.5
    • /
    • pp.917-933
    • /
    • 2021
  • In this paper, we investigate the behavior and sensitivity analysis of a solution set for a parametric generalized multi-valued nonlinear quasi-variational inclusion problem in a real Hilbert space. For this study, we utilize the technique of resolvent operator and the property of a fixed-point set of a multi-valued contractive mapping. We also examine Lipschitz continuity of the solution set with respect to the parameter under some appropriate conditions.

CONVERGENCE AND STABILITY OF ITERATIVE ALGORITHM OF SYSTEM OF GENERALIZED IMPLICIT VARIATIONAL-LIKE INCLUSION PROBLEMS USING (𝜃, 𝜑, 𝛾)-RELAXED COCOERCIVITY

  • Kim, Jong Kyu;Bhat, Mohd Iqbal;Shaf, Sumeera
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.4
    • /
    • pp.749-780
    • /
    • 2021
  • In this paper, we give the notion of M(., .)-𝜂-proximal mapping for a nonconvex, proper, lower semicontinuous and subdifferentiable functional on Banach space and prove its existence and Lipschitz continuity. As an application, we introduce and investigate a new system of variational-like inclusions in Banach spaces. By means of M(., .)-𝜂-proximal mapping method, we give the existence of solution for the system of variational inclusions. Further, propose an iterative algorithm for finding the approximate solution of this class of variational inclusions. Furthermore, we discuss the convergence and stability analysis of the iterative algorithm. The results presented in this paper may be further expolited to solve some more important classes of problems in this direction.

OUTER APPROXIMATION METHOD FOR ZEROS OF SUM OF MONOTONE OPERATORS AND FIXED POINT PROBLEMS IN BANACH SPACES

  • Abass, Hammad Anuoluwapo;Mebawondu, Akindele Adebayo;Narain, Ojen Kumar;Kim, Jong Kyu
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.3
    • /
    • pp.451-474
    • /
    • 2021
  • In this paper, we investigate a hybrid algorithm for finding zeros of the sum of maximal monotone operators and Lipschitz continuous monotone operators which is also a common fixed point problem for finite family of relatively quasi-nonexpansive mappings and split feasibility problem in uniformly convex real Banach spaces which are also uniformly smooth. The iterative algorithm employed in this paper is design in such a way that it does not require prior knowledge of operator norm. We prove a strong convergence result for approximating the solutions of the aforementioned problems and give applications of our main result to minimization problem and convexly constrained linear inverse problem.

Strong Convergence of a Bregman Projection Method for the Solution of Pseudomonotone Equilibrium Problems in Banach Spaces

  • Olawale Kazeem Oyewole;Lateef Olakunle Jolaoso;Kazeem Olalekan Aremu
    • Kyungpook Mathematical Journal
    • /
    • v.64 no.1
    • /
    • pp.69-94
    • /
    • 2024
  • In this paper, we introduce an inertial self-adaptive projection method using Bregman distance techniques for solving pseudomonotone equilibrium problems in reflexive Banach spaces. The algorithm requires only one projection onto the feasible set without any Lipschitz-like condition on the bifunction. Using this method, a strong convergence theorem is proved under some mild conditions. Furthermore, we include numerical experiments to illustrate the behaviour of the new algorithm with respect to the Bregman function and other algorithms in the literature.