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Abstract. In this paper, we introduce an inertial self-adaptive projection method using

Bregman distance techniques for solving pseudomonotone equilibrium problems in reflexive

Banach spaces. The algorithm requires only one projection onto the feasible set without

any Lipschitz-like condition on the bifunction. Using this method, a strong convergence

theorem is proved under some mild conditions. Furthermore, we include numerical ex-

periments to illustrate the behaviour of the new algorithm with respect to the Bregman

function and other algorithms in the literature.

1. Introduction

Let C be a nonempty, closed and convex subset of a reflexive real Banach space
E with dual space E∗. Throughout this paper, we shall denote by ∥ · ∥ and ⟨·, ·⟩ the
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norm and the duality pairing between the elements of E and E∗, respectively. The
Equilibrium Problem (EP) is formulated as:

Find x∗ ∈ C such that g(x∗, y) ≥ 0, ∀ y ∈ C,(1.1)

where g : C × C → R is a bifunction satisfying g(x, x) = 0 for all x ∈ C. The EP
provides a unified framework for the study of various problems arising in pure and
applied sciences such as complimentarity problems, fixed point problems, optimiza-
tion problems, variational inequality problems and so on [4, 15, 31]. For instance,
if g(x, y) = ⟨Fx, y − x⟩ for all x, y ∈ C where F : C → E∗ is a mapping, then the
EP becomes the Variational Inequality Problem (VIP) (see [16, 35]) which consists
of finding a point x∗ ∈ C such that

⟨F (x∗), x∗ − y⟩ ≥ 0, ∀ y ∈ C.(1.2)

In the study of EP, research is split into existence results and the development of
iterative algorithms for approximating solutions. For more on existence results,
we refer the readers to the works of [4, 15] and the references therein. Iterative
schemes for approximating solutions of equilibrium problems have been studied in
both finite and infinite dimensional spaces (see [3, 12, 31]). In recent years, there
have been several results about approximating the solution of equilibrium problems
involving pseudomonotone and strongly pseudomonotone bifunctions (see [10, 12,
14, 19, 22, 32]). We note that in most of these results, there is the requirement
that the bifunction g satisfies a certain Lipschitz-type condition on the set C. A
bifunction g : C × C → R is said to satisfy Lipschitz-type condition, if there exist
constants c1, c2 > 0 such that for all x, y, z ∈ C

g(x, y) + g(y, z) ≥ g(x, z)− c1∥x− y∥2 − c2∥y − z∥2.(1.3)

The Lipschitz condition (1.3) does not hold in general, and when it does, it
is not always easy to find the Lipschitz constants c1 and c2. This may affect the
efficiency of the method (see [13, 20, 23]). In addition to this, previous methods
require solving two strongly convex programming problems; this is not efficient
when the feasible set or the bifunction have complex structures. To reduce some of
these drawbacks, Vinh and Gibali [17] recently introduced gradient projection type
algorithms for solving the EP with a pseudomonotone bifunction in real Hilbert
spaces as follows:

Algorithm 1.1. Inertial Gradient projection method (IGPM) for EP
Initialization: Take θn ∈ [0, 1) and a positive sequence {βn}∞n=0 satisfying

(1.4)

∞∑
n=0

βn = +∞,

∞∑
n=0

β2
n < +∞.

Select initial points x0, x1 ∈ C and set n = 1.
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Iterative step: Given xn−1 and xn (n ≥ 1), choose αn such that 0 ≤ θn ≤ θ̄n
where

θ̄n =

{
min

{
θ,

β2
n

∥xn−xn−1∥

}
, if xn ̸= xn−1

θ, otherwise.

Compute

wn = xn + θn(xn − xn−1).

Take g(xn) ∈ ∂(xn, ·)(xn)(n ≥ 1). Calculate

ηn = max{1, ∥g(xn)∥}, λn =
βn

ηn

and

xn+1 = PC(wn − αng(xn)).

Stopping criterion If xn+1 = wn = xn for some n ≥ 1 then stop. Otherwise set
n := n+ 1 and return to Iterative step.

Although, Algorithm 1.1 does not require a Lipschitz-like condition on the pseu-
domonotone bifunction, its convergence requires condition (1.4) which significantly
affects the convergence rate of the algorithm. Rehman et al [32] proposed an ex-
plicit algorithm which does not requires condition (1.4) but rather the Lipschitz-like
condition (1.3) in real Hilbert space as follows:

Algorithm 1.2. Inertial explicit subgradient extragradient method (IESEM)

Initialization: Choose x−1, y−1, x0, y0 ∈ H, α1, µ ∈ (0, h(θn)) and let αn ∈
[0,

√
5− 2) be a nondecreasing sequence.

Iterative step: Given xn−1, {yn−1}, {xn}, {yn} and αn(n ≥ 0).

Step 1 Construct a half space

Cn = {w ∈ H : ⟨wn − αnvn − yn, w − yn⟩ ≤ 0},

where vn ∈ ∂f(yn−1, yn) and compute

xn+1 = argmin{αnf(yn, y) +
1

2
∥wn − y∥2 : y ∈ Cn},

where wn = xn + θn(xn − xn−1).

Step 2 Set

αn+1 = min

{
αn,

µ(∥yn−1 − yn∥2 + ∥xn+1 − yn∥2)
2[f(yn−1, xn+1)− f(yn−1, yn)− f(yn, xn+1)]+

}
and compute

xn+1 = argmin{αn+1f(yn, y) +
1

2
∥wn − y∥2 : y ∈ C},
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where wn+1 = xn+1 + θn+1(xn+1 − xn).

Stopping criterion If xn+1 = wn and yn = yn−1 for some n ≥ 0 then stop.
Otherwise set n := n+ 1 and return to Step 1.

The authors proved that the sequences {xn} and {yn} generated by Algorithm 1.2
converges weakly to a solution of the EP.
Let us also mention that the inertial extrapolation term in Algorithms 1.1 and 1.2 is
used as a means of speeding up the convergence properties of the algorithms. This
method was first introduced by Polyak [30] and has been adopted by many other
authors, see for instance [11, 19, 22, 27, 32].
Motivated by the above results, in this paper, we are concerned with finding an
iterative method which does not involve the condition (1.4) and a Lipschitz-like
condition for solving pseudomonotone EP in reflexive Banach space. We introduce
a new inertial self-adaptive Bregman projection method which does not require
the bifunction satisfying the Lipschitz-like condition and its convergence is proved
without using condition (1.4). We also use the Bregman distance techniques which
generalizes the Euclidean distance popularly used by other authors.
The rest of the paper is organized as follows. In Section 2, we collect some basic
definitions and preliminary results required in our main results. In Section 3, we
introduce our algorithm and prove a strong convergence result for the sequence
generated by the algorithm. In Section 4, we give an application of our result
to variational inequality problems. We provide some numerical reports and also
compare the performance of our method with other methods in the literature in
Section 5. We give some concluding remarks in Section 6.

2. Preliminaries

In this section, we give some definitions and preliminary results which will be
used in our convergence analysis. Let C be a nonempty, closed and convex subset
of a real Banach space E with the norm ∥ · ∥ and dual space E∗. We denote the
weak and strong convergence of a sequence {xn} ⊂ E to a point x ∈ E by xn ⇀ x
and xn → x, respectively.

A function f : E → (−∞,+∞] is said to be

(i) proper, if dom(f) = {x ∈ E : f(x) < ∞} ≠ ∅;

(ii) f is strongly convex with strongly convexity constant ρ > 0, i.e

f(x) ≥ f(y)− ⟨∇f(y), x− y⟩+ ρ

2
∥x− y∥2, ∀ x, y ∈ E;

(iii) Gâteaux differentiable at x ∈ E, if there exists an element in E denoted by
f ′(x) or ∇f(x) such that

lim
t→0

f(x+ ty)− f(x)

t
= ⟨y, f ′(x)⟩, ∀y ∈ E,
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where f ′(x) or ∇f(x) is called the Gâteaux differential or gradient of f at x.
We note that ∇f(∇f∗(x∗)) = x∗ for all x∗ ∈ E∗;

(iv) Fréchet differentiable at x, if the limit in (iii) above exists uniformly on the
unit sphere of E.

Lemma 2.1. ([33]) Let f : E → R be uniformly Fréchet differentiable and bounded
on bounded subsets of E, then ∇f is uniformly continuous on bounded subsets of E
from strong topology of E to the strong topology of E∗.

The subdifferential set f at a point x denoted by ∂f is defined by

∂f(x) := {x∗ ∈ E∗ : f(x)− f(y) ≤ ⟨y − x, x∗⟩, y ∈ E}.

Every element x∗ ∈ ∂f(x) is called a subgradient of f at x. If f is continuously
differentiable, then ∂f(x) = {∇f(x)}, which is the gradient of f at x. The Fénchel
conjugate of f is the convex functional f∗ : E∗ → R ∪ {+∞} defined f∗(x∗) =
sup{⟨x∗, x⟩ − f(x) : x ∈ E}. Let E be a reflexive Banach space, the function f is
said to be Legendre if and if only it satisfies the following two conditions (see [1]):

(L1) int dom(f) ̸= ∅ and ∂f is single-valued on its domain ;

(L2) int dom(f) ̸= ∅ and ∂f∗ is single-valued on its domain.

Let f be a strictly convex and Gâteaux differentiable function. The function
Df : dom (f)×int dom (f)→ [0,∞) defined by

Df (x, y) = f(x)− f(y)− ⟨x− y,∇f(y)⟩,

is called the Bregman distance with respect to the function f. It is worthy of men-
tioning that the bifunction Df is not a metric in the usual sense because it does
not satisfy the symmetry and triangle inequality properties. However, it posses the
following important property called the three points identity:

Df (x, y) +Df (y, z)−Df (x, z) = ⟨∇f(z)−∇f(y), x− y⟩,(2.1)

for x ∈ dom(f) and y, z ∈ int dom(f). Also, from the strong convexity of f and the
definition of the Bregman distance, we have that

Df (x, y) ≥
ρ

2
∥x− y∥2.(2.2)

The Bregman distance function has been widely used by many authors in the liter-
ature (see [1, 7, 8] and the references therein).

Remark 2.2. Practical important examples of Bregman distance functions can be
found in [2]. For example, if f(x) = 1

2∥ · ∥, then Df (x, y) = 1
2∥x − y∥2 which is

the Euclidean distance. Also, if f(x) = −
m∑
j=1

xj log(xj) which is the Shannon’s
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entropy for the non-negative orthant Rm
++ := {x ∈ Rm : xj > 0}, we obtain the

Kullback-Leibler cross entropy defined by

Df (x, y) =

m∑
j=1

(
xj log

(
xj

yj

)
− 1

)
+

m∑
j=1

yj .(2.3)

Definition 2.3. ([5]) Let C be a nonempty, closed and convex subset of a reflexive
real Banach space E. A Bregman projection of x ∈ int dom(f) onto C ⊂ int dom(f)
is the unique vector ΠCx ∈ C which satisfies

Df (ΠCx, x) = inf{Df (y, x) : y ∈ C}.

Lemma 2.4. ([9]) Let C be a nonempty, closed and convex subset of E and x ∈ E.
Let f : E → R be a Gâteaux differentiable and totally convex function. Then

(i) q = ΠCx if and only if ⟨∇f(x)−∇f(q), y − q⟩ ≤ 0, for all y ∈ C;

(ii) Df (y,ΠCx) +Df (ΠC(x), x) ≤ Df (y, x), for all y ∈ C.

Definition 2.5. ([6, 9]) The bifunction vf : int dom(f)× [0,+∞) defined by

vf (x, t) := inf{Df (y, x) : y ∈ dom(f), ∥y − x∥ = t}

is called the modulus of total convexity at x. The function f is called totally convex
at x ∈ int dom(f) if vf (x, t) is positive for any t > 0. The modulus of total convexity
of f on C is the bifunction vf : intdom(f)× [0,+∞), defined by

vf (C, t) := inf{vf (x, t) : x ∈ C ∩ intdom(f)}.

he function f is called totally convex on bounded subsets if vf (C, t) > 0 for any
nonempty and bounded subset C and any t > 0. Also, f is said to be coercive, if

lim
∥x∥→+∞

∣∣∣ f(x)∥x∥

∣∣∣ = +∞.

Proposition 2.6. ([6]) If x ∈ int dom(f), then the following are equivalent:

(i) the function f is totally convex at x,

(ii) f is sequentially consistent, i.e., for any sequence {yn} ⊂ dom(f),

lim
n→∞

Df (yn, x) = 0 ⇒ lim
n→∞

∥yn − x∥ = 0.

We also recall (see [6]) that the function f is called sequentially consistent, if for
any two sequences {xn} and {yn} in E such that the first one is bounded,

lim
n→∞

Df (xn, yn) = 0 ⇒ lim
n→∞

∥xn − yn∥ = 0.(2.4)



Bregman Gradient Projection Method 75

Proposition 2.7. ([6]) If dom(f) contains at least two points, then the function
f is totally convex on bounded sets if and only if the function f is sequentially
consistent.

Proposition 2.8. ([34]) Let f : E → R be a Gâteaux differentiable and totally
convex function. If x̄ ∈ E and the sequence {Df (xn, x̄)} is bounded, then the
sequence {xn} is also bounded.

Lemma 2.9. ([29]) If f : E → (−∞,+∞] is a proper lower semicontinuous func-
tion, then f∗ : E∗ → (−∞,+∞] is a proper weak∗ lower semicontinuous and convex
function. Thus for all y ∈ E, we have

Df

(
y,∇f∗

(
N∑
i=1

λi∇f(xi)

))
≤

N∑
i=1

λiDf (y, xi)

where {xi}Ni ⊂ E and {λi}Ni ⊂ (0, 1) with
N∑
i=1

λi = 1.

A Banach space is said to satisfy the Opial property [28], if for any sequence {xn} ⊂
E such that xn ⇀ x for some x ∈ E, we have

lim
n→∞

∥xn − x∥ < lim
n→∞

∥xn − y∥

for all y ∈ E with y ̸= x. We note that all Hilbert spaces, all finite dimensional
Banach spaces and the Banach space ℓp (1 ≤ p < ∞) satisfy the Opial property. It
is also worthy of mentioning that not every Banach space satisfy the Opial property
(see [18]). In order to extend this property to cover all Banach spaces, Huang et al.
[25] established the following lemma.

Lemma 2.10. ([25]) Let E be a Banach space and f : E → (−∞,+∞] be a proper
strictly convex function that is Gâteaux differentiable and {xn} is a sequence in E
such that xn ⇀ x for some x ∈ E. Then

lim
n→∞

Df (x, xn) < lim
n→∞

Df (y, xn)

for all y ∈ domf with y ̸= x.

Lemma 2.11. ([17]) Let {an} and {bn} be two nonnegative real sequences such that

an+1 ≤ an − bn.

Then, {an} is bounded and
∞∑

n=1
bn < ∞.

Definition 2.12. Let C be a nonempty, closed and convex subset of a Banach
space E and g : C × C → R be a bifunction, g is said to be:
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(i) strongly γ-monotone on C, if there exists γ > 0 such that

g(x, y) + g(y, x) ≤ −γ∥x− y∥2, ∀ x, y ∈ C;

(ii) monotone on C, if

g(x, y) + g(y, x) ≤ 0, ∀ x, y ∈ C;

(iii) strongly γ-pseudomonotone on C, if there exists γ > 0 such that for any
x, y ∈ C

g(x, y) ≥ 0 ⇒ g(y, x) ≤ −γ∥x− y∥2;

(iv) pseudomonotone on C, if

g(x, y) ≥ 0 ⇒ g(y, x) ≤ 0, ∀x, y ∈ C.

It is easy to see that (i) ⇒ (ii) ⇒ (iv) and (i) ⇒ (iii) ⇒ (iv) but the converse
implications are not always true, see, for instance [17, 20, 23].

3. Main Result

In this section, we give a concise and precise statement of our algorithm and dis-
cuss some of its elementary properties convergence analysis. Let C be a nonempty,
closed and convex subset of a reflexive Banach space E and f : E → R∪{+∞} be a
bounded Legendre function which is uniformly Fréchet differentiable, strongly coer-
cive, strongly convex and totally convex on bounded subsets of E. Let g : C×C → R
be a bifunction satisfying the following conditions:

(A1) g(x, ·) is convex and lower semicontinuous for every x ∈ E;

(A2) g is pseudomonotone on C;

(A3) EP (g, C) ̸= ∅;

(A4) If {xn}∞n=0 ⊂ E is bounded, then the sequence {h(xn) ∈ ∂g(xn, ·)(xn)}∞n=0 is
bounded.

(A5) For L > 0, we assume h(x) ∈ ∂g(x, ·)(x) is L-Lipschitz continuous. However,
the knowledge of L is not required in execution and practice of our method.

Remark 3.1. We note that condition (A4) is a standard assumption and holds
when g(x, ·) is bounded on bounded sets (see, for instance [9, Proposition 1.1.11]).

Next, we present our algorithm as follows:

Algorithm 3.2. Modified Bregman Popov Extragradient Method for EP Initial-
ization: Choose x0, x1, y0 and y1 ∈ C and α1 > 0, µ ∈ (0, ρ(

√
2− 1)), θ ∈ (0, 1).
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Iterative step: Having xn−1, xn, yn−1, yn and αn. Calculate xn+1, yn+1 and αn+1

for each n ≥ 1 as follows
(3.1)

wn = ∇f∗(∇f(xn) + θ(∇f(xn−1)−∇f(xn)
)
,

xn+1 = ΠTn∇f∗((∇f(wn)− αnh(yn))
)
,

αn+1 =

min

{
αn,

µ∥yn − yn−1∥
∥h(yn)− h(yn−1)∥

}
, if ∥h(yn)− h(yn−1)∥ > 0,

αn, otherwise,

yn+1 = ΠC∇f∗((∇f(xn+1)− αn+1h(yn))
)
,

where
Tn = {y ∈ E : ⟨∇f(wn)− αnh(yn−1)−∇f(yn), y − yn⟩ ≤ 0}

and h(x) ∈ ∂g(x, ·)(x) for each x ∈ C.

Stopping criterion If xn+1 = wn and yn+1 = yn = yn−1 for some n ≥ 1 then
stop. Otherwise set n := n+ 1 and return to Iterative step.

Remark 3.3. The sequence {αn} given in (3.1) is nonincreasing and

lim
n→∞

αn = α ≥ min
{
α1,

µ

L

}
.

Proof: It follows from the definition of {αn} that αn+1 ≤ αn. Thus, {αn} is non-
increasing. Now, since ∥h(yn)− h(yn−1)∥ ≤ L∥yn − yn−1∥ for L > 0, we get that

µ∥yn − yn−1∥
∥h(yn)− h(yn−1)∥

≥ µ

L
, if ∥h(yn)− h(yn−1)∥ > 0.

This together with (3.1) implies

αn ≥ min
{
α1,

µ

L

}
.

Thus, the sequence {αn} is lower bounded. The conclusion follows. The following
inequality is satisfied for {xn} and {yn}.

Lemma 3.4. Let {xn} and {yn} be defined by Algorithm 3.2, then for every x∗ ∈
EP(g, C) the following inequality holds

Df (x
∗, xn+1) ≤ Df (x

∗, xn)−
(
1−

√
2

µαn

ραn+1

)
Df (xn+1, yn)

−
(
1− (1 +

√
2)

µαn

ραn+1

)
Df (yn, wn) + θ

(
Df (x

∗, xn−1)−Df (x
∗, xn)

)
.(3.2)

Proof: Since x∗ ∈ EP(g, C) and xn+1 = ΠTn
∇f∗(∇f(wn) − αnh(yn)), we have by

Lemma 2.4 (i), that

⟨∇f(wn)− αnh(yn)−∇f(xn+1), x
∗ − xn+1⟩ ≤ 0,
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this implies

⟨∇f(wn)−∇f(xn+1), x
∗ − xn+1⟩ ≤ αn⟨h(yn), x∗ − xn+1⟩.(3.3)

Using the three points identity (2.1) and subdifferential of g in the second variable
in (3.3), we obtain

Df (x
∗, xn+1) = Df (x

∗, wn)−Df (xn+1, wn) + ⟨∇f(wn)−∇f(xn+1), x
∗ − xn+1⟩

≤ Df (x
∗, wn)−Df (xn+1, wn) + αn⟨h(yn), x∗ − xn+1⟩

= Df (x
∗, wn)−Df (xn+1, wn) + αn⟨h(yn), yn − xn+1⟩(3.4)

+αn⟨h(yn), x∗ − yn⟩
≤ Df (x

∗, wn)−Df (xn+1, wn) + αn⟨h(yn), yn − xn+1⟩+ αng(yn, x
∗)

= Df (x
∗, wn)−Df (xn+1, wn) + αn⟨h(yn−1), yn − xn+1⟩

+αn⟨h(yn)− h(yn−1), yn − xn+1⟩+ αng(yn, x
∗).(3.5)

Note that

αn⟨h(yn−1), yn − xn+1⟩ = ⟨∇f(wn)− αnh(yn−1)−∇f(yn), xn+1 − yn⟩
+⟨∇f(yn)−∇f(wn), xn+1 − yn⟩.

Since xn+1 ∈ Tn, ⟨∇f(wn)− αnh(yn−1)−∇f(yn), xn+1 − yn⟩ ≤ 0 implies that

αn⟨h(yn−1), yn − xn+1⟩ ≤ ⟨∇f(yn)−∇f(wn), xn+1 − yn⟩.(3.6)

Using the three points identity (2.1), we have

⟨∇f(yn)−∇f(wn), xn+1 − yn⟩ = Df (xn+1, wn)−Df (xn+1, yn)−Df (yn, wn).

Substituting this into (3.6), we get

αn⟨h(yn−1), yn − xn+1⟩ ≤ Df (xn+1, wn)−Df (xn+1, yn)−Df (yn, wn).(3.7)

From (3.7) and (3.5), we obtain that

Df (x
∗, xn+1) ≤ Df (x

∗, wn)−Df (xn+1, yn)−Df (yn, wn) + αng(yn, x
∗)

+αn⟨h(yn−1)− h(yn), xn+1 − yn⟩.(3.8)
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Observe from the definition of αn, that

αn⟨h(yn−1)−h(yn), xn+1 − yn⟩ ≤ αn∥h(yn−1)− h(yn)∥∥xn+1 − yn∥

≤ µαn

αn+1
∥yn−1 − yn∥∥xn+1 − yn∥

≤ µαn

αn+1

(
1

2
√
2
∥yn−1 − yn∥2 +

1√
2
∥xn+1 − yn∥2

)
≤ µαn

2
√
2αn+1

(
(2 +

√
2)∥yn − wn∥2 +

√
2∥wn − yn−1∥2

)
+

µαn√
2αn+1

∥xn+1 − yn∥2

≤ (1 +
√
2)

µαn

ραn+1
Df (yn, wn) +

µαn

ραn+1
Df (wn, yn−1)

+
√
2

µαn

ραn+1
Df (xn+1, yn),(3.9)

where we have used 2ab ≤ 1√
2
a2+

√
2b2 and (a+b)2 ≤

√
2a2+(2+

√
2)b2 in separate

steps and the strong convexity of f .
By substituting (3.9) into (3.8), we obtain

Df (x
∗, xn+1) ≤ Df (x

∗, wn)−
(
1−

√
2

µαn

ραn+1

)
Df (xn+1, yn)

−
(
1− (1 +

√
2)

µαn

ραn+1

)
Df (yn, wn) + αng(yn, x

∗).(3.10)

Since x∗ ∈ EP(g, C) and yn ∈ C, we have that g(x∗, yn) ≥ 0, it follows from the
fact that g is pseudomonotone that g(yn, x

∗) ≤ 0. Therefore, we obtain from (3.10),
that

Df (x
∗, xn+1) ≤ Df (x

∗, wn)−
(
1−

√
2

µαn

ραn+1

)
Df (xn+1, yn)

−
(
1− (1 +

√
2)

µαn

ραn+1

)
Df (yn, wn).(3.11)

Observe from (3.1) and Lemma 2.9, that

Df (x
∗, wn) = Df (x

∗,∇f∗((1− θ)∇f(xn) + θ∇f(xn−1)))

≤ (1− θ)Df (x
∗, xn) + θDf (x

∗, xn−1).(3.12)

It therefore follows from (3.11) and (3.12), that

Df (x
∗, xn+1) ≤ Df (x

∗, xn)−
(
1−

√
2

µαn

ραn+1

)
Df (xn+1, yn)

−
(
1− (1 +

√
2)

µαn

ραn+1

)
Df (yn, wn) + θ

(
D(x∗, xn−1)−Df (x

∗, xn)

)
.(3.13)
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The prove is complete.
Now, we present the weak convergence theorem for Algorithm 3.2.

Theorem 3.5. Assume that the conditions A1-A4 are satisfied and θDf (xn, xn−1) <
∞, then the sequences {xn} and {yn} given by Algorithm 3.2 converge weakly to a
solution x∗ ∈ EP(g, C).

Proof. Let x∗ ∈ EP(g, C). First, we show that {xn} is bounded. Indeed, we have
from Lemma 3.4 that (3.13) satisfies an+1 ≤ an − bn where

an = Df (x
∗, xn) +

µαn

ραn+1
Df (xn, yn−1) + θDf (x

∗, xn−1)

and

bn =

(
1− (1 +

√
2)

µαn

ραn+1

)
Df (yn, wn)(3.14)

+

(
1− (1 +

√
2)

µαn

ραn+1
+

µαn+1

ραn+2

)
Df (xn+1, yn).

Then, by Lemma 2.11, {an} is bounded, which implies that {xn} is bounded,
lim
n→∞

Df (xn+1, yn) = 0 and lim
n→∞

Df (yn, wn) = 0. Consequently, ∥yn − wn∥ → 0

and ∥xn+1 − yn∥ → 0 as n → ∞. Again, we see from (3.1) and Lemma 2.9, that

Df (xn, wn) ≤ (1− θ)Df (xn, xn) + θDf (xn, xn−1)

≤ θDf (xn, xn−1).(3.15)

Thus, we have that Df (xn, wn) → 0 as n → ∞, which implies by (2.4), that
∥xn−wn∥ → 0 as n → ∞. Consequently, one gets that ∥xn+1−xn∥ → 0 as n → ∞.
Furthermore

∥yn+1 − yn∥ ≤ ∥yn+1 − xn+1∥+ ∥xn+1 − xn∥+ ∥xn − yn∥ → 0, as n → ∞.

Since f is uniformly Fréchet differentiable, we have that ∥∇f(yn+1)−∇f(xn+1)∥ →
0 as n → ∞.
From the boundedness of {xn}, there exists a subsequence {xnk

} of {xn} such that
xnk

⇀ x̄. Consequently, {wnk
} and {ynk

} converge both converge weakly to x̄. It
follows easily that x̄ ∈ C. From the definition of yn+1 and Lemma 2.4 (i), we have

⟨∇f(xn+1)− αnh(yn)−∇f(yn+1), y − yn+1⟩ ≤ 0, ∀ y ∈ C,(3.16)

that is

⟨∇f(xn+1)−∇f(yn+1), y − yn+1⟩ − αn⟨h(yn), y − yn+1⟩ ≤ 0, ∀ y ∈ C

and〈
∇f(xn+1)−∇f(yn+1)

αn
, y − yn+1

〉
+ ⟨h(yn), yn+1 − yn⟩ ≤ ⟨h(yn), y − yn⟩, ∀ y ∈ C.
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Hence, we have by the definition of subdifferential, that forall y ∈ C,

〈
∇f(xnk+1)−∇f(ynk+1)

αnk

, y − ynk+1

〉
+ ⟨h(ynk

), ynk+1 − ynk
⟩ ≤ g(ynk

, y).

(3.17)

Observe that
∇f(xnk+1)−∇f(ynk+1)

αnk

→ 0 as k → ∞, since αnk
≥ α > 0. Hence,

by passing limit over (3.17), we obtain that g(x̄, y) ≥ 0, ∀ y ∈ C, thus x̄ ∈ EP(g, C).
Finally, we show that x̄ is unique. Assume the contrary, then there exists a subse-
quence xni

such that xni
⇀ x̂. Following similar arguments as above, we have that

x̂ ∈ EP(g, C). It follows from the Bregman Opial-like property of E (Lemma 2.10),
that

lim
n→∞

Df (x̄, xn) = lim
k→∞

Df (x̄, xnk
) = lim inf

k→∞
Df (x̄, xnk

)

< lim inf
k→∞

Df (x̂, xnk
) = lim

k→∞
Df (x̂, xnk

)

= lim
n→∞

Df (x̂, xn).

Thus, we arrive at a contradiction. Therefore is x̄ = x̂.

We are now in position to establish the strong convergence of Algorithm 3.2,
however we replace condition A2 of Assumption A by A2∗ that the bifunction
g : C × C → R ∪ {+∞} is strongly pseudomonotone.

Strong convergence theorem for Algorithm 3.2.

Theorem 3.6. Assume that conditions A1, A2∗ and A3-A4 are satisfied.The se-
quences {xn} and {yn} of Algorithm 3.2 converge strongly to a unique solution of
EP(g, C).

Proof: Let x∗ ∈ EP(g, C). By the definition of xn+1 and Lemma 2.4, we have

⟨∇f(wn)− αnh(yn)−∇f(xn+1), x
∗ − xn+1⟩ ≤ 0,

alternatively

⟨∇f(wn)−∇f(xn+1), x
∗ − xn+1⟩ ≤ αn⟨h(yn), x∗ − xn+1⟩.

By using the three points identity 2.1, we have

Df (x
∗, xn+1) +Df (xn+1, wn)−Df (x

∗, wn) ≤ αn⟨h(yn), x∗ − xn+1⟩,

that is

Df (x
∗, xn+1) ≤ Df (x

∗, wn)−Df (xn+1, wn) + αn⟨h(yn), x∗ − xn+1⟩.(3.18)
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Since x∗ ∈ EP(g, C), we have g(x∗, x) ≥ 0 for all x ∈ C. Using the fact that g is
strongly pseudomonotone, we obtain g(x, x∗) ≤ −γ∥x − x∗∥2. Taking x = yn ∈ C,
we get g(yn, x

∗) ≤ −γ∥yn − x∗∥2. Now, using the definition of subdifferential of g
at yn, we have

⟨h(yn), x∗ − xn+1⟩ ≤ ⟨h(yn), x∗ − yn⟩+ ⟨h(yn), yn − xn+1⟩
≤ g(yn, x

∗) + ⟨h(yn), yn − xn+1⟩
≤ −γ∥yn − x∗∥2 + ⟨h(yn), yn − xn+1⟩.(3.19)

Substituting (3.18) into (3.19), we get

Df (x
∗, xn+1) ≤ Df (x

∗, wn)−Df (xn+1, wn)− γαn∥yn − x∗∥2(3.20)

+ αn⟨h(yn), yn − xn+1⟩,

again by using (2.1), we get

Df (x
∗, xn+1) ≤ Df (x

∗, wn)−Df (wn, yn)−Df (xn+1, yn)

− ⟨∇f(yn)−∇f(wn), xn+1 − yn⟩
− γαn∥yn − x∗∥2 + αn⟨h(yn), yn − xn+1⟩

= Df (x
∗, wn)−Df (wn, yn)−Df (xn+1, yn)

+ ⟨∇f(wn)− αnh(yn)−∇f(yn), xn+1 − yn⟩
− γαn∥yn − x∗∥2.(3.21)

Observe that

⟨∇f(wn) − αnh(yn)−∇f(yn), xn+1 − yn⟩(3.22)

= ⟨∇f(wn)− αnh(yn−1)−∇f(yn), xn+1 − yn⟩
+αn⟨h(yn−1)− h(yn), xn+1 − yn⟩,

and ⟨∇f(wn)− αnh(yn−1)−∇f(yn), xn+1 − yn⟩ ≤ 0, since xn+1 ∈ Tn. Hence

⟨∇f(wn)−αnh(yn)−∇f(yn), xn+1 − yn⟩ ≤ αn⟨h(yn−1)− h(yn), xn+1 − yn⟩
≤ αn∥h(yn−1)− h(yn)∥∥xn+1 − yn∥

≤ µαn

αn+1
∥yn−1 − yn∥∥xn+1 − yn∥

≤ µαn

αn+1
{ 1

2
√
2
∥yn−1 − yn∥2 +

1√
2
∥xn+1 − yn∥2}

≤ µαn

2
√
2αn

(
(2 +

√
2)∥yn − wn∥2 +

√
2∥wn − yn−1∥2

)
+

µαn√
2αn+1

∥xn+1 − yn∥2

≤ (1 +
√
2)

µαn

ραn+1
Df (yn, wn) +

µαn

ραn+1
Df (wn, yn−1)

+
√
2

µαn

ραn+1
Df (xn+1, yn).(3.23)
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Using (3.23) in (3.21), we get

Df (x
∗,xn+1) ≤ Df (x

∗, wn)−
(
1−

√
2
µαn

αn+1

)
Df (xn+1, yn)

−
(
1− (1 +

√
2)

µαn

αn+1

)
Df (yn, wn) +

µαn

αn+1
Df (wn, yn−1)− γαn∥yn − x∗∥2.

(3.24)

by using (3.12), we obtain

Df (x
∗, xn+1) ≤ Df (x

∗, xn)−
(
1−

√
2
µαn

αn+1

)
Df (xn+1, yn)

−
(
1− (1 +

√
2)

µαn

αn+1

)
Df (yn, wn) +

µαn

αn+1
Df (wn, yn−1)

+θ

(
Df (x

∗, xn−1)−Df (x
∗, xn)

)
− γαn∥yn − x∗∥2.

Following similar argument as in Theorem 3.5, we obtain that {xn} is bounded. It
follows also that ∥wn − xn∥ → 0, ∥yn − xn∥ → 0, ∥xn+1 − yn∥ → 0 and ∥xn+1 −
xn∥ → 0 as n → ∞. Since f is continuous on bounded sets, coercive and uniformly
Fréchet differentiable, we get by Lemma 2.1, that ∥f(xn+1)−f(wn)∥ → 0, ∥f(xn)−
f(xn−1)∥ → 0 and ∥∇f(xn+1)−∇f(xn)∥ → 0 as n → ∞. Therefore,

Df (x
∗, wn)−Df (x

∗, xn+1)
(3.25)

= f(x∗)− f(wn)− ⟨∇f(wn), x
∗ − wn⟩ − f(x∗) + f(xn+1)

+ ⟨∇f(xn+1), x
∗ − xn+1⟩

= f(xn+1)− f(wn) + ⟨∇f(xn+1), x
∗ − xn+1⟩ − ⟨∇f(wn), x

∗ − wn⟩
= f(xn+1)− f(wn) + ⟨∇f(xn+1)−∇f(wn), x

∗ − wn⟩
+ ⟨∇f(xn+1), wn − xn+1⟩.(3.26)

Thus, passing limits over (3.26), we get

lim
n→∞

Df (x
∗, wn)−Df (x

∗, xn+1) = 0.

Also,

Df (wn, yn−1) = f(wn)− f(yn−1)− ⟨∇f(yn−1), wn − yn−1⟩ → 0 as n → ∞.

It follows from (3.24), that

γαn∥yn − x∗∥2 ≤ Df (x
∗, wn)−Df (x

∗, xn+1) +
µαn

αn+1
Df (wn, yn−1) → 0.
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Thus, since γαn > 0, we get that

lim
n→∞

∥yn − x∗∥ = 0.

This implies {yn} converges strongly to x∗. Consequently, {xn} converges strongly
to x∗ ∈ EP(g, C).

4. Application

In this section, we give an application of our main result to the Market Equi-
librium Model. First, we give an adaptation of our method to the Variational
Inequality Problem (VIP). Suppose the function g : C ×C → R in (1.1) is given by

g(x, y) :=

{
⟨F (x), y − x⟩ ≥ 0, if x ∈ C,

+∞, otherwise,
(4.1)

where F : C → E∗, then the EP (1.1) reduces to the classical variational inequality
problem (1.2). That is finding a point x∗ ∈ C such that

⟨F (x∗), x− x∗⟩ ≥ 0, ∀x ∈ C.

Denote by VIP(C,F) the solution set of VIP (1.2). Variational inequalities play
an important role in studying a wide class of unilateral, obstacle and equilibrium
problems arising in several branches of pure and applied sciences in a unified and
general framework (see [17, 21]) and the references therein. For this and more there
have been extensive studies of this problem by several authors (see [24, 25, 26]) for
more.
The mapping F : C → E∗ is said to be strongly γ-pseudomonotone if there exists
γ > 0 such that for any x, y ∈ C

⟨Fx, y − x⟩ ≥ 0, =⇒ ⟨Fy, y − x⟩ ≥ γ∥x− y∥2.(4.2)

By this adaptation, Algorithm 3.2 provides a new method for variational inequal-
ities. In fact, we have the following Popov subgradient extragradient method for
VIP.
We obtain the following for solving variational inequality problem.

Algorithm 4.1. Modified Bregman Popov Extragradient Method for VIP Initial-
ization: Choose x0, x1, y0 and y1 ∈ C and α1 > 0, µ ∈ (0, ρ(

√
2− 1)), θ ∈ (0, 1).

Iterative step: Having xn−1, xn, yn and αn, calculate xn+1, yn+1 and αn+1 for
each n ≥ 1 as follows

wn = ∇f∗(∇f(xn) + θ(∇f(xn−1)−∇f(xn)),

xn+1 = ΠTn
∇f∗(∇f(wn)− αnFyn),

αn+1 =

min

{
αn,

µ∥yn − yn−1∥
∥h(yn)− h(yn−1)∥

}
, if ∥h(yn)− h(yn−1)∥ > 0,

αn, otherwise,

yn+1 = ΠC∇f∗(∇f(xn+1)− αn+1Fyn),
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where
Tn = {y ∈ E : ⟨∇f(xn)− αnF (yn−1)−∇f(yn), y − yn⟩ ≤ 0}.

Stopping criterion If xn+1 = wn = yn for some n ≥ 1 then stop. Otherwise set
n := n+ 1 and return to Iterative step.

Theorem 4.2. Let C be a nonempty, closed and convex subset of a reflexive real
Banach E with dual E∗. Assume F : C → E∗ be a strongly γ-pseudomonotone
operator which is bounded on bounded sets such that V IP (C,F ) ̸= ∅. Let {xn} be
the sequence generated by Algorithm 4.1, then {xn} converges strongly to an element
in V IP (C,F ).

Proof. For each x, y ∈ C, let the bifunction g : C × C → R be given by (4.1). It
follows by hypothesis that the assumptions (A1)-(A4) are satisfied. Following the
conclusion of Theorem 3.5 that x∗ ∈ EP (g, C), we have that x∗ ∈ V IP (C,F ).

5. Numerical Examples

In this section, we report some numerical experiments to illustrate the perfor-
mance of our method for some known Bregman distances. We first list some of
functions with their corresponding distances.

(i) Squared Euclidean distance (SED) with domf = Rn,

f(x) =
1

2
xTx, ∇f(x) = x, Df (x, y) =

1

2
∥x− y∥22.

m

(ii) General quadratic kernel (GQK) with domf = Rn,

f(x) =
1

2
xTAx, ∇f(x) = Ax, Df (x, y) =

1

2
(x− y)TA(x− y),

where

– A is symmetric positive definite;

– in some applications, A is positive semidefinite, but not positive definite.

(iii) Relative entropy (RE) with itemize domf = Rn
+,

f(x) =

n∑
i=1

xi log xi, ∇f(x) =

log x1 + 1
...

log xi + 1

 ,

Df (x, y) =

n∑
i=1

(
xi log

xi

yi
− xi + yi

)
.

Df (x, y) is called the Kullback–Leibler distance.
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Table 1: Computational result for Example 5.1.

SED MD KLD ISD

M = 10 Iter. 17 21 21 15
Time (sec) 0.0521 0.1353 0.0709 0.0393

M = 30 Iter. 16 10 22 14
Time (sec) 0.1658 0.2733 0.2486 0.1423

M = 50 No of Iter. 16 17 23 14
Time (sec) 0.3395 0.9916 0.4868 0.3484

M = 100 No of Iter. 20 9 24 13
Time (sec) 0.9158 1.2521 1.4161 0.6622

(iv) Logarithmic barrier (LB) with domf = Rn
++,

f(x) = −
n∑

i=1

log xi, ∇f(x) =

−
1
x1

...
− 1

xn

 , Df (x, y) =

n∑
i=1

(
xi

yi
− log

xi

yi
− 1

)
,

Df (x, y) in this example is called Itakura-Saito divergence.

Example 5.1. We consider the EP (1.1) with the bifunction g : RN × RN → R
defined by

g(x, y) = ⟨Px+Qy + q, y − x⟩

where q is a vector in RN , P and Q are N ×N matrices such that P is symmetric
and positive semidefinite and Q− P is negative semidefinite. The feasible set C is
defined by

C = {x = (x1, x2, . . . , xN )T ∈ RN : ∥x∥ ≤ 1 and xi > 0, i = 1, 2, . . . , N}.

Note that g is monotone (hence, pseudomonotone) and the unique solution of the
EP is x̄ = (0, 0, . . . , 0)T (see [31]). The entries of the matrices P and Q are generated
randomly, while q is generated randomly and uniformly distributed in [−2, 2]. We
compare the performance of Algorithm 3.2 for various kind of the convex function
f listed above. We test the algorithm for N = 10, 30, 50, 100, µ = 0.35, α1 = 0.24
and the initial points x0, x1 are generated randomly in RN . The projection onto the
feasible set is calculated explicitly and we study the convergence of the sequence
generated by Algorithm 3.2 using Error = ∥xn+1 − wn∥2 + ∥yn − xn∥2 < 10−4 as
stopping criterion. The numerical results are shown in Table 1 and Figure 1.



Bregman Gradient Projection Method 87

0 5 10 15 20 25
Iteration number (n)

10-4

10-2

100

102

E
rr

or
s

SED
MD
KLD
ISD

0 5 10 15 20 25
Iteration number (n)

10-4

10-2

100

102

E
rr

or
s

SED
MD
KLD
ISD

0 5 10 15 20 25
Iteration number (n)

10-5

100

E
rr

or
s

SED
MD
KLD
ISD

0 5 10 15 20 25
Iteration number (n)

10-5

100

E
rr

or
s

SED
MD
KLD
ISD

Figure 1: Example 5.1, From Top – Bottom: M = 10, 30, 50, 100.

Example 5.2. In this example, we consider the EP (1.1) with the bifunction g :
C × C → R defined by

g(x, y) =

N∑
i=1

[
(xi + 1 + yi)(yi − xi)

]
and C =

{
x ∈ R+ :

N∑
i=1

xi = 1

}
.

We compare the performance of Algorithm 3.2 using the convex functions as given
above. The initial values x0, x1, y0, y1 are generated randomly in RN where N =
10, 30, 50 and 100. We choose µ = 0.63, α1 = 0.5. and study the convergence of the
algorithm using Error = ∥xn+1 −wn∥2 + ∥yn − xn∥2 < 10−4 as stopping criterion.
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Table 2: Computational result for Example 5.2.

SED MD KLD ISD

M = 10 Iter. 22 5 25 18
Time (sec) 0.0108 0.0479 0.3417 0.0344

M = 30 Iter. 23 19 67 19
Time (sec) 0.0132 0.4386 0.0646 0.0196

M = 50 No of Iter. 23 24 56 20
Time (sec) 0.0068 1.3560 0.0507 0.0089

M = 100 No of Iter. 27 31 26 22
Time (sec) 0.0115 2.9870 0.0164 0.0131
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Figure 2: Example 5.1, From Top – Bottom: M = 10, 30, 50, 100.

Example 5.3. Let E = ℓ2(R) be the linear spaces whose elements are all 2-
summable sequences {xi}∞i=1 of scalars in R, that is

ℓ2(R) :=

{
x = (x1, x2 · · · , xi · · · ), xi ∈ R and

∞∑
i=1

|xi|2 < ∞

}
,
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Figure 3: Example 5.3, Top left: Case 1, Top right: Case 2, Bottom left:
Case 3, Bottom right Case 4 .

with the inner product ⟨·, ·⟩ : ℓ2 × ℓ2 → R defined by ⟨x, y⟩ :=
∞∑
i=1

xiyi and the

norm ∥ · ∥ : ℓ2 → R by ∥x∥ :=

√
∞∑
i=1

|xi|2, where x = {xi}∞i=1, y = {yi}∞i=1.

Suppose f : ℓ2 → ℓ2 be given by
1

2
∥x∥2 for all x ∈ ℓ2 then, ∇f(x) = ∥x∥. Let

C = {x ∈ E : ∥x∥ ≤ 3}, and let h(x) ∈ ∂g(x, ·)(x) be given by x(5 − ∥x∥). The



90 O. K. Oyewole, L. O. Jolaoso and K. O. Aremu

projection onto C is easily computed as

PC(x) =

x if ∥x∥ ≤ 3
3x

∥x∥
otherwise.

In this experiment for Algorithm 3.2, we choose µ = 0.63, α1 = 0.5. θ = 1
7 . We also

compare the algorithm in case θ ̸= 0 and θ = 0 (without inertial term) for varying
values of x0 and x1 as follows:

Case 1 x0 = (1, 0, 0, . . . , 0, . . .)′ and x1 = (−2, 0, 0, . . . , 0, . . .)′

Case 2 x0 = (2, 0, 0, . . . , 0, . . .)′ and x1 = (1, 0, 0, . . . , 0, . . .)′

Case 3 x0 = (2, 0, 0, . . . , 0, . . .)′ and x1 = (−1.5, 0, 0, . . . , 0, . . .)′

Case 4 x0 = (1, 0, 1, . . . , 0, . . .)′ and x1 = (−2, 0, 1, . . . , 0, . . .)′

For Example 5.3, we chose Error= ∥xn+1 − wn∥2 + ∥yn − xn∥2 and Error =
∥xn+1 − xn∥2 + ∥yn − xn∥2 respectively for the accelerated and unaccelerated algo-
rithm. The comparisons are demonstrated in Figure 3.

ww

Example 5.4. In this example we make a comaprison of Algorithm 3.2 and Algo-
rithm 1.1. Let E = R and g : C × C → R be given by g(x, y) = (2.5− ∥x∥)(y − x).
Let C = {x ∈ E : ∥x∥ ≤ 3}. Then the projection onto C is easily computed as

PC(x) =

x if ∥x∥ ≤ 3,
3x

∥x∥
otherwise.

For Algorithm 3.2 choose the sequences θ = 1
3 , α1 = 2.5 and βn = 1

2n+3 for
Algorithm 1.1. The execution of this example is terminated at En = ∥xn+1−wn∥ =
10−4. The result of this example is reported in Figure 4 for various values of the
initial points x0, y0, x1 and y1.

Case 1 x0 = 0.56, x1 = 0.76, y0 = 0.98, and y1 = 0.65.

Case 2 x0 = 0.91, x1 = 0.75, y0 = 0.98, and y1 = 0.12.

Case 3 x0 = 1.01, x1 = −1.76, y0 = 1.12, and y1 = 0.65.

Case 4 x0 = 1.56, x1 = 2.06, y0 = −0.98, and y1 = −0.65.



Bregman Gradient Projection Method 91

0 10 20 30 40 50 60
Number of iterations

10-8

10-6

10-4

10-2

100

102

E
n

Case 1

Algorithm 3.2
Algorithm 1.1

0 5 10 15 20 25 30 35
Number of iterations

10-6

10-5

10-4

10-3

10-2

10-1

100

101

E
n

Case 2

Algorithm 3.2
Algorithm 1.1

0 5 10 15 20 25
Number of iterations

10-5

10-4

10-3

10-2

10-1

100

101

E
n

Case 3

Algorithm 3.2
Algorithm 1.1

0 5 10 15 20 25
Number of iterations

10-6

10-5

10-4

10-3

10-2

10-1

100

101

E
n

Case 4

Algorithm 3.2
Algorithm 1.1

Figure 4: Example 5.4, Top left: Case 1, Top right: Case 2, Bottom left:
Case 3, Bottom right Case 4 .

6. Conclusion

This paper presented a Popov inspired subgradient extragradient algorithm
from obtaining the solutions of an equilibrium problem. The method uses a step
size which is carefully selected for easy computation and does not depend on a
Lipschitz-type condition. Based on this method, we state and prove weak and
strong convergence theorems under some certain monotonicity and standard as-
sumptions. By numerical illustrations, we displayed the efficiency of this method
compared to other previous obtained results in this direction.
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