DOI QR코드

DOI QR Code

CONVERGENCE THEOREMS OF A FINITE FAMILY OF ASYMPTOTICALLY QUASI-NONEXPANSIVE TYPE MAPPINGS IN BANACH SPACES

  • Saluja, Gurucharan Singh (Department of Mathematics & Information Technology Govt. Nagarjuna P. G. College of Science)
  • Received : 2010.03.15
  • Accepted : 2011.01.05
  • Published : 2011.01.31

Abstract

In this paper, we study multi-step iterative algorithm with errors and give the necessary and sufficient condition to converge to com mon fixed points for a finite family of asymptotically quasi-nonexpansive type mappings in Banach spaces. Also we have proved a strong convergence theorem to converge to common fixed points for a finite family said mappings on a nonempty compact convex subset of a uniformly convex Banach spaces. Our results extend and improve the corresponding results of [2, 4, 7, 8, 9, 10, 12, 15, 20].

Keywords

References

  1. R. E. Bruck, T. Kuczumow and S. Reich, Convergence of iterates of asymptotically non-expansive mappings in Banach spaces with the uniform Opial property, Colloq. Math. 65 (1993), 169-179. https://doi.org/10.4064/cm-65-2-169-179
  2. C. E. Chidume and Bashir Ali, Convergence theorems for finite families of asymptotically quasi-nonexpansive mappings, J. Inequalities and Applications, Vol.2007, Article ID 68616, 10 pages.
  3. C. E. Chidume and E. U. Ofoedu, Approximation of common fixed points for finite families of total asymptotically nonexpansive mappings, J. Math. Anal. Appl. 333 (2007), 128-141. https://doi.org/10.1016/j.jmaa.2006.09.023
  4. M. K. Ghosh and L. Debnath, Convergence of Ishikawa iterates of quasi-nonexpansive mappings, J. Math. Anal. Appl. 207 (1997), 96-103. https://doi.org/10.1006/jmaa.1997.5268
  5. K. Goebel and W. A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 35 (1972), 171-174. https://doi.org/10.1090/S0002-9939-1972-0298500-3
  6. S. Ishikawa, Fixed point by a new iteration method, Proc. Amer. Math. Soc. 44 (1974), 147-150. https://doi.org/10.1090/S0002-9939-1974-0336469-5
  7. A. R. Khan, A. A. Domlo and H. Fukhar-ud-din, Common fixed points of Noor iteration for a finite family of asymptotically quasi-nonexpansive mappings in Banach spaces, J. Math. Anal. Appl. 341 (2008), 1-11. https://doi.org/10.1016/j.jmaa.2007.06.051
  8. Q. H. Liu, Iterative sequences for asymptotically quasi-nonexpansive mappings, J. Math. Anal. Appl. 259 (2001), 1-7. https://doi.org/10.1006/jmaa.2000.6980
  9. Q. H. Liu, Iterative sequences for asymptotically quasi-nonexpansive mappings with error member, J. Math. Anal. Appl. 259 (2001), 18-24. https://doi.org/10.1006/jmaa.2000.7353
  10. Q. H. Liu, Iterative sequences for asymptotically quasi-nonexpansive mappings with error member of uniformly convex Banach spaces, J. Math. Anal. Appl. 266 (2002), 468-471. https://doi.org/10.1006/jmaa.2001.7629
  11. W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953), 506-510. https://doi.org/10.1090/S0002-9939-1953-0054846-3
  12. W. V. Petryshyn and T. E. Williamson, Strong and weak convergence of the sequence of successive approximations for quasi-nonexpansive mappings, J. Math. Anal. Appl. 43 (1973), 459-497. https://doi.org/10.1016/0022-247X(73)90087-5
  13. J. Quan, S. S. Chang and X. J. Long, Approximation common fixed point of asymptotically quasi-nonexpansive-type mappings by the finite steps iterative sequences, Fixed Point Theory and Applications Volume 2006, Article ID 70830, pages 1-8.
  14. D. R. Sahu, S. C. Shrivastava and B. L. Malager, Approximation of common fixed points of a family of asymptotically quasi-nonexpansive mappings, Demonstratio Math. 41 (2008), no. 3, 625-632.
  15. N. Shahzad and A. Udomene, Approximating common fixed points of two asymptotically quasi-nonexpansive mappings in Banach spaces, Fixed Point Theory and Applications, Vol.2006, Article ID 18909, pages 1-10.
  16. J. Schu, Weak and strong convergence theorems to fixed points of asymptotically non-expansive mappings, Bull. Austral. Math. Soc. 43 (1991), 153-159. https://doi.org/10.1017/S0004972700028884
  17. K. K. Tan and H. K. Xu, Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process, J. Math. Anal. Appl. 178 (1993), 301-308. https://doi.org/10.1006/jmaa.1993.1309
  18. K. K. Tan and H. K. Xu, Fixed point iteration processes for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 122 (1994), 733-739. https://doi.org/10.1090/S0002-9939-1994-1203993-5
  19. Y. C. Tang and J. G. Peng, Approximation of common fixed points for a finite family of uniformly quasi-Lipschitzian mappings in Banach spaces, Thai. J. Maths. 8 (2010), no. 1, 63-70.
  20. B. Xu and M. A. Noor, Fixed point iterations for asymptotically nonexpansive mappings in Banach spaces, J. Math. Anal. Appl. 267 (2002), 444-453. https://doi.org/10.1006/jmaa.2001.7649