• Title/Summary/Keyword: quantum transport

Search Result 201, Processing Time 0.027 seconds

Synthesis and Characterization of ZnO/TiO2 Photocatalyst Decorated with PbS QDs for the Degradation of Aniline Blue Solution

  • Lee, Jong-Ho;Ahn, Hong-Joo;Youn, Jeong-Il;Kim, Young-Jig;Suh, Su-Jeong;Oh, Han-Jun
    • Korean Journal of Metals and Materials
    • /
    • v.56 no.12
    • /
    • pp.900-909
    • /
    • 2018
  • A $ZnO/TiO_2$ photocatalyst decorated with PbS quantum dots (QDs) was synthesized to achieve high photocatalytic efficiency for the decomposition of dye in aqueous media. A $TiO_2$ porous layer, as a precursor photocatalyst, was fabricated using micro-arc oxidation, and exhibited irregular porous cells with anatase and rutile crystalline structures. Then, a ZnO-deposited $TiO_2$ catalyst was fabricated using a zinc acetate solution, and PbS QDs were uniformly deposited on the surface of the $ZnO/TiO_2$ photocatalyst using the successive ionic layer adsorption and reaction (SILAR) technique. For the PbS $QDs/ZnO/TiO_2$ photocatalyst, ZnO and PbS nanoparticles are uniformly precipitated on the $TiO_2$ surface. However, the diameters of the PbS particles were very fine, and their shape and distribution were relatively more homogeneous compared to the ZnO particles on the $TiO_2$ surface. The PbS QDs on the $TiO_2$ surface can induce changes in band gap energy due to the quantum confinement effect. The effective band gap of the PbS QDs was calculated to be 1.43 eV. To evaluate their photocatalytic properties, Aniline blue decomposition tests were performed. The presence of ZnO and PbS nanoparticles on the $TiO_2$ catalysts enhanced photoactivity by improving the absorption of visible light. The PbS $QDs/ZnO/TiO_2$ heterojunction photocatalyst showed a higher Aniline blue decomposition rate and photocatalytic activity, due to the quantum size effect of the PbS nanoparticles, and the more efficient transport of charge carriers.

An Equaivalent Circuit Model for Rquantum Well Laser Diodes (양자우물 레이저 다이오드의 등가회로 모델)

  • 이승우;김대욱;최우영
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.1
    • /
    • pp.49-58
    • /
    • 1998
  • In this paper, a new equivalent circuit model for quantum-well laser diode (LD) is proposed. The model includes carrier transport effects in the SCH region, and rprovides, in a stable and accurate manner, large-and small-signal responses of laser diode output power as function of injected currents. SPICE simulation was performed using the circuit model and results are presented for L-I characteristics, pulse and frequency responses under various conditions. It is expencted that the new equaivalent circuit model will find useful applications for designing and analyzing OEIC, LD driver circuits, and LD packaging.

  • PDF

Synthesis of Conjugated Polymers with Fluorene and Biphenylamine and Application to PLED Devices

  • Park, Eun-Jung;Kwon, Hyeok-Yong;Park, Lee-Soon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.458-460
    • /
    • 2008
  • Four kinds of copolymers with fluorene and biphenylamine units were synthesized by palladium-catalyzed polycondensation reaction. These polymers were characterized in terms of their UV/Visible and photoluminescence (PL) properties in solution and film state. These polymers were also studied as a hole transporting material in the polymer light emitting diode (PLED) devices.

  • PDF

Quenched Fano effect due to one Majorana zero mode coupled to the Fano interferometer

  • Wang, Qi;Zhu, Yu-Lian
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1275-1279
    • /
    • 2018
  • We investigate the change of the Fano effect by considering one Majorana zero mode to couple laterally to the single-dot Fano interferometer. It is found that the Majorana zero mode quenches the Fano effect thoroughly and causes the conductance to be independent of the dot level, the dot-lead coupling, and the increase of the Majorana-dot coupling. As a result, the linear conductance becomes only related to the interlead coupling and the magnetic-flux phase factor. These results can be helpful for the detection of Majorana zero mode.

Bipolar Transport Model of Single Layer OLED for Embedded System

  • Lee, Jung-Ho;Han, Dae-Mun;Kim, Yeong-Real
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.237-241
    • /
    • 2005
  • We present a device model for organic light emitting diodes(OLEDs) which includes charge injection, transport, recombination, and space charge effects in the organic materials. The model can describe both injection limited and space charge limited current flow and the transition between them. Calculated device current, light output, and quantum and power efficiency are presented for different cases of material and device parameters and demonstrate the improvements in device performance in bilayer devices. These results are interpreted using the calculated spatial variation of the electric field, charge density and recombination rate density in the device. We find that efficient OLEDs are possible for a proper choice of organic materials and contact parameters.

  • PDF

Novel transport materials for high-performance fluorescent and phosphorescent OLEDs

  • Bohm, E.;Anemian, R.;Busing, A.;Fortte, R.;Heil, H.;Kaiser, J.;Krober, J.;Leu, S.;Mujica-Fernaud, T.;Parham, A.;Pflumm, C.;Voges, F.
    • Journal of Information Display
    • /
    • v.12 no.3
    • /
    • pp.141-144
    • /
    • 2011
  • To improve the performance of blue fluorescent and green phosphorescent organic light-emitting diode devices, Merck developed novel green phosphorescent host and electron-transporting materials. The newly developed electron-transporting material improves the external quantum efficiency of blue fluorescent devices up to 8.7%, with an excellent lifetime. In combination with the newly developed host materials, the efficiency of green phosphorescent devices can be improved by a factor of 1.7, and the lifetime by a factor of 7.

Enhanced efficiency of organic light-emitting diodes by doping the electrontransport layer

  • Lee, Hyun-Koo;Kwon, Do-Sung;Lee, Chang-Hee
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1410-1412
    • /
    • 2005
  • We present that the electroluminescence (EL) efficiency can be improved by doping an electron transport layer (ETL) with organic materials which can make electron current increase. The electron transport layer of aluminum tris(8 -hydroxyquinoline) (Alq3) is doped with 2-(4-Biphenylyl)-5-(4-tertbutylphenyl)- 1,3,4-oxadiazole) (butyl-PBD) to enhance the electron mobility of the ETL. The higher quantum efficiency of device having ETL using Alq3 doped with butyl-PBD can be attributed to the improved electron and hole balance.

  • PDF

Enhanced efficiency of organic light-emitting diodes by doping the holetransport layer

  • Kwon, Do-Sung;Song, Jun-Ho;Lee, Hyun-Koo;Shin, You-Chul;Lee, Chang-Hee
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1401-1403
    • /
    • 2005
  • We present that the carrier balance can be improved by doping a hole transport layer of 4,4'- bis[N-(1-napthyl)-N-phenyl-amino]-biphenyl (${\alpha}$-NPD) with a hole blocking material of 2,9-dimethyl- 4,7-diphenyl-1,10-phenanthroline (BCP). The doping leads to disturb hole transport, which can enhance the balance of electron s and holes concentration in the emitting layer, aluminum tris(8 -hydroxyquinoline) (Alq3), resulting in enhanced electroluminescence (EL) quantum efficiency for the device with the doped ${\alpha}$-NPD.

  • PDF

ZnO/ITO anode for organic electro-luminescence devices

  • Jeong, S.H.;Kho, S.;Jung, D.;Boo, J.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.885-886
    • /
    • 2003
  • A bilayer is used as an anode electrode for organic electroluminescent devices. The bilayer consist of an ultrathjn ZnO layer adjacent to an hole-transporting layer and an Indium tin oxide(ITO) outerlayer. We tried to bring low the barrier between the devices as deposited ZnO films on ITO substrates. We fabricated the organic EL structure consisted of Al as cathode, $Al_{2}O_{3}$ as electro transport layer, Alq3 as luminously layer, triphenyl diamine(TPD) as hole transport layer and ZnO(l nm )/ITO(l50 nm) as anode. The result of this experiment was not good compared with the case of using ITO, Nevertheless, at this structure we obtained the lowest turn-on voltage as the value of 19 V and the good brightness (6200 $cd/m^{2}$) of the emission light from the devices. Then the quantum efficiency was to be 1.0%.

  • PDF