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Novel transport materials for high-performance fluorescent and phosphorescent OLEDs
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To improve the performance of blue fluorescent and green phosphorescent organic light-emitting diode devices, Merck
developed novel green phosphorescent host and electron-transporting materials. The newly developed electron-transporting
material improves the external quantum efficiency of blue fluorescent devices up to 8.7%, with an excellent lifetime. In
combination with the newly developed host materials, the efficiency of green phosphorescent devices can be improved by a
factor of 1.7, and the lifetime by a factor of 7.
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1. Introduction
Although there has been constant progress in organic
light-emitting diode (OLED) material development in
recent years, the lifetimes of the blue fluorescent and
green phosphorescent [1,2] devices are not sufficient for
all applications. To address this problem, new host and
electron-emitting materials were developed. It was found,
however, that the materials adjacent to the emission layer
also play a critical part in OLED performance. Especially,
the electron transport side has a strong impact on device
efficiency, driving voltage, and lifetime. A fundamental
connection was found between electron injection, elec-
tron transport, efficiency, and lifetime for blue fluorescent
OLEDs and for the influence of charge balance within the
device [3].

In R, G, and B side-by-side OLED devices, the electron
transport layers are typically built as common layers. As the
blue fluorescent pixel is typically the pixel with the shortest
lifetime, the optimized electron transport setting for blue
is also applied to the other colors. In this study, the influ-
ence of the host materials on green phosphorescent OLEDs
for a given blue-fluorescent-lifetime-optimized electron
transport layer stack was investigated.

2. Results and discussion
2.1. Tuning lifetime and efficiency in blue fluorescent

devices using new electron transport materials
In blue fluorescent devices, it was found that the best EQE
and the best lifetime cannot be achieved simultaneously [3]
(Figure 1).
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To achieve an excellent lifetime with good efficiency and
driving voltage, the new electron transport material ETM-
036 was developed. In combination with the Merck host
SMB-013 and the deep-blue fluorescent emitter SEB-115,
a Vop of 4.2 V, an EQE of 7.6%, and an extrapolated life-
time of 14,000 h at 1000 cd/m2 at a deep-blue Commission
Internationale de l’Eclairage (CIE) y coordinate of 0.15 was
achieved. With the blue emitter SEB-127 (CIE y = 0.20),
an EQE of 8.7% and an efficacy of 14.1 cd/A at 1000 cd/m2

were obtained in a similar setup (Figures 2 and 3).

2.2. Tuning lifetime, efficiency, and operation voltage
in green phosphorescent devices using new host
materials

To evaluate the host materials for green phosphorescent
devices, the device structure shown in Figure 4 was used.

The hole injection layer (HIL) consists of a conventional
Merck hole injection material. NPB (4,4′-bis (1 naphtyl-
N-phenyl-amino)-biphenyl) was employed as the hole
transport layer (HTL). The green phosphorescent emitter
was fac tris(2-phenylperidine) iridium (Ir(ppy)3). While
triple matrix material (TMM-A), a spiro-keton (bis(9,9′-
spirobifluoren-2-yl)keton), is a pure electron-dominated
host material, TMM-B is a more bipolar host, and TMM-C
shows significant hole transport (Figure 5).

Both of the newly developed TMMs showed higher
efficiencies as well as longer lifetimes. At 1000 cd/m2,
TMM-B showed an efficacy of 47.4 cd/A and an approxi-
mated lifetime (LT50) of 47,000 h, and TMM-C showed an
efficacy of 41.2 cd/A and a lifetime of 42000 h (Figures 6
and 7).
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Figure 1. Dependence of EQE (red) and lifetime (black) on the
driving voltage for various ETL configurations (different ETMs,
EILs, etc.). As all the devices had the same HTL and EML config-
urations, the voltage differences were due to the different electron
currents.
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Figure 2. Structure of blue fluorescent devices.

0
2
4
6
8

10
12
14
16
18

0 2000 4000 6000

luminance [cd/m²]

ef
fic

ie
nc

y 
[c

d/
A

]  
 

Figure 3. Efficacy of a blue fluorescent device employing
ETM-036:LiQ (blue), in comparison with a device with Alq as
ETM (red).
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Figure 4. Device structure for green phosphorescent devices.
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Figure 5. Current–voltage curve of TMM-B (blue) and TMM-C
(green) in a hole-only setup.
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Figure 6. Current efficacy with TMM-A (black), TMM-B (red),
and TMM-C (blue).
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Figure 7. Lifetime with TMM-A (black), TMM-B (red), and
TMM-C (blue).

In the standard device setup with TMM-A, the emitter
is mainly responsible for the hole transport. With the new
matrices, especially with TMM-C, the matrix itself is capa-
ble of hole transport. Therefore, a high emitter concentration
is no longer needed, allowing a wider variation in emitter
concentration.
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Shown in Figure 8 is the device setup for the follow-
ing experiments, with an optimized hole transport material
(HTM) thickness and an HTM material with a higher triplet
gap than that of NPB.

The optimum efficiency and lifetime for TMM-C were
achieved at an emitter concentration of around 10% (Fig-
ures 9 and 10). The concentration variation showed only a
moderate change in efficiency. The lifetime of LT50 showed
a behavior very similar to that of efficiency; it can thus be
assumed that the lower lifetime is mainly correlated to the
lower efficiency in these devices (Figures 9 and 10). LT90,
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Figure 8. Optimized device structure for green phosphorescent
devices.
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Figure 9. Efficiency with TMM-C for different emitter concen-
trations.
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Figure 10. LT50 (red) and LT90 (blue × 10) depending on the
emitter concentration.

however, was strongly improved by the use of low emitter
concentrations (Figures 10 and 11).

Another way of improving the device performance is by
employing the mixed-matrix approach [4,5]. By adding a
second matrix component (TMM-D), which will be mainly
responsible for hole transport within the matrix, the charge
balance can be tuned over a broad range. Figure 12 shows
the device setup with a low emitter concentration of 5%.

Mixed-matrix devices allow simultaneously high effi-
ciency and very long lifetimes. At a 40-50% co-matrix
concentration, a maximum lifetime for LT50 and very
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Figure 11. Lifetimes for the emitter concentrations of 3% (green)
and 10% (blue).
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Figure 12. Setup for green phosphorescent mixed-matrix
devices.
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Figure 13. Efficiency of the phosphorescent mixed matrix
depending on the concentration of the hole-transporting co-matrix.
For comparison, the value at 0% TMM-D was included.
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Figure 14. Lifetimes of LT50 (green) and LT90 (blue × 10) for
mixed-matrix devices. For comparison, the value at 0% TMM-D
was included.

good values for LT90 were achieved, without overly sac-
rificing efficiency (Figures 13 and 14). Such values were
obtained at a very low phosphorescent emitter concentration
of only 5%.

3. Summary
The new electron material ETM-036, which is very well
suited for blue fluorescent as well as green phosphorescent

systems, was developed. The new generation of phospho-
rescent host materials significantly improves the lifetime
and efficiency of the aforementioned systems without sacri-
ficing the operation voltage. A further improvement in life-
time is possible by applying a co-host system using TMM-C
and TMM-D, which also allow very low phosphorescent
emitter concentrations.

References
[1] M.A. Baldo, D.F O’Brian, Y. You, S. Silbey, M.E. Thompson

and S.R. Forrest, Nature 395, 151 (1998).
[2] M.A. Baldo, S. Lamansky, P.E. Burrows, M.E. Thompson

and S.R. Forrest, Appl. Phys. Lett. 75, 4 (1999).
[3] E. Böhm, C. Pflumm, F. Voges, M. Flämmich, H. Heil,

A. Büsing, A. Parham, R. Fortte and T. Mujica, IDW’09,
Miyazaki, Japan, OLED 1-2 (2009), pp. 431–434.

[4] H. Vestweber, A. Gerhard, J. Kaiser, H. Heil, J. Kroeber,
C. Pflumm, P. Stoessel, D. Joosten, A. Buesing, R. Fortte,
A. Parham and E. Boehm, IMID/IDMC/ASIA display ’08
Technical Digest (2008), p. 925.

[5] M.E. Kondakova, T.D. Pawlik, R.H. Young, D.J. Giesen,
D.Y. Kondakov, C.T. Brown, J.C. Deaton, J.R. Lenhard and
K.P. Klubek, J. Appl. Phys. 9, 104 (2008).

D
ow

nl
oa

de
d 

by
 [

T
he

 K
or

ea
n 

In
fo

 D
is

pl
ay

 S
oc

ie
ty

 ]
 a

t 0
0:

56
 1

7 
A

ug
us

t 2
01

1 




