• 제목/요약/키워드: quantum chemical calculation

검색결과 74건 처리시간 0.027초

Numerical Calculation of Vibrational Transition Probability for the Forced Morse Oscillator by Use of the Anharmonic Boson Operators

  • 이창순;김유항
    • Bulletin of the Korean Chemical Society
    • /
    • 제22권7호
    • /
    • pp.721-726
    • /
    • 2001
  • The vibrational transition probability expressions for the forced Morse oscillator have been derived using the commutation relations of the anharmonic Boson operators. The formulation is based on the collinear collision model with the exponential repulsive potential in the framework of semiclassical collision dynamics. The sample calculation results for H2+ He collision system, where the anharmonicity is large, are in excellent agreement with those from an exact, numerical quantum mechanical study by Clark and Dickinson, using the reactance matrix. Our results, however, are markedly different from those of Ree, Kim and Shin's in which they approximate the commutation operator I。 as unity, the harmonic oscillator limit. We have concluded that the quantum number dependence in I。 must be retained to get accurate vibrational transition probabilities for the Morse oscillator.

The effective model of the human Acetyl-CoA Carboxylase inhibition by aromatic-structure inhibitors

  • Minh, Nguyen Truong Cong;Thanh, Bui Tho;Truong, Le Xuan;Suong, Nguyen Thi Bang;Thao, Le Thi Xuan
    • 전기전자학회논문지
    • /
    • 제21권3호
    • /
    • pp.309-319
    • /
    • 2017
  • The research investigates the inhibition of fatty acid biosynthesis of the human Acetyl-CoA Carboxylase enzyme by the aromatic-structure inhibitors (also known as ligands) containing variables of substituents, contributing an important role in the treatment of fatty-acid metabolic syndrome expressed by the group of cardiovascular risk factors increasing the incidence of coronary heart disease and type-2 diabetes. The effective interoperability between ligand and enzyme is characterized by a 50% concentration of enzyme inhibitor ($IC_{50}$) which was determined by experiment, and the factor of geometry structure of the ligands which are modeled by quantum mechanical methods using HyperChem 8.0.10 and Gaussian 09W softwares, combining with the calculation of quantum chemical and chemico-physical structural parameters using HyperChem 8.0.10 and Padel Descriptor 2.21 softwares. The result data are processed with the combination of classical statistical methods and modern bioinformatics methods using the statistical softwares of Department of Pharmaceutical Technology - Jadavpur University - India and R v3.3.1 software in order to accomplish a model of the quantitative structure - activity relationship between aromatic-structure ligands inhibiting fatty acid biosynthesis of the human Acetyl-CoA Carboxylase.

Quantum Mechanical Studies for Proton Transfer in HOCl + HCl and H2O + ClONO2 on Water Clusters

  • Kim, Yong-Ho;Park, Chea-Yong;Kim, Kyung-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권12호
    • /
    • pp.1953-1961
    • /
    • 2005
  • We have performed high-level quantum mechanical calculation for multiple proton transfer in HOCl + HCl and $H_2O$ + $ClONO_2$ on water clusters, which can be used as a model of the reactions on ice surface in stratospheric clouds. Multiple proton transfer on ice surface plays crucial role in these reactions. The structures of the clusters with 0-3 water molecules and the transition state structures for the multiple proton transfer have been calculated. The energies and barrier heights of the proton transfer were calculated at various levels of theory including multi-coefficient correlated quantum mechanical methods (MCCM) that have recently been developed. The transition state structures and the predicted reaction mechanism depend very much on the level of theory. In particular, the HF level can not correctly predict the TS structure and barrier heights, so the electron correlation should be considered appropriately.

Density Functional Theory for Calculating the OH Stretching Frequency of Water Molecules

  • Jeon, Kiyoung;Yang, Mino
    • 대한화학회지
    • /
    • 제60권6호
    • /
    • pp.410-414
    • /
    • 2016
  • The anharmonic frequency of a local OH stretching mode of a water monomer and dimer was calculated using various levels of density functional theory. The quantum chemical potential energy curves as a function of the OH bond distance were calculated, and they were fitted with the Morse potential function to analytically obtain the fundamental transition frequency. By comparing those values with the frequencies similarly calculated using an ab initio quantum chemical method, the coupled cluster theory including both single and double excitations with the perturbative inclusion of triple excitation in the complete basis limit, the accuracy of various density functional methods in the calculation of anharmonic vibration frequency of water molecules was assessed. For a water monomer, X3LYP and B3LYP methods give the best accuracy, whereas for a water dimer, B972, LCBLYP, ${\omega}B97X$, ${\omega}B97$ methods show the best performance.

Loss of HCN from the Pyrazine Molecular Ion: A Theoretical Study

  • Jung, Sun-Hwa;Yim, Min-Kyoung;Choe, Joong-Chul
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권7호
    • /
    • pp.2301-2305
    • /
    • 2011
  • The potential energy surface (PES) for the loss of HCN or HNC from the pyrazine molecular ion was determined based on quantum chemical calculations using the G3//B3LYP method. Four possible dissociation pathways to form four $C_3H_3N^{+{{\bullet}}$ isomers were examined. A Rice-Ramsperger-Kassel-Marcus quasi-equilibrium theory model calculation was performed to predict the dissociation rate constant and the product branching ratio on the basis of the obtained PES. The resultant rate constant for the HCN loss agreed with the previous experimental result. The kinetic analysis predicted that the formation of $CH=CHN{\equiv}CH^{+{\bullet}}+HCN$ was predominant, which occurred by three consecutive steps, a C-C bond cleavage to form a linear intermediate, a rearrangement to form an H-bridged intermediate, and elimination of HCN.

알라닌 올리고머의 배좌구조에 관한 양자화학적 계산 (Quantum Chemical Calculations on the Conformational Structure of the Alanine Oligomer Model)

  • 심재호
    • 한국산학기술학회논문지
    • /
    • 제16권2호
    • /
    • pp.1563-1570
    • /
    • 2015
  • 본 연구는 올리고펩티드의 연쇄성장 과정에서의 배좌의 변화를 조사하기 위하여 알라닌 올리고머 모델의 2량체 부터 5량체 까지 양자화학 계산(QCC)에 의한 구조최적화 계산을 하였다. 말단기의 영향을 확인하기 위하여 N말단 및 C말단이 공히 amide 구조를 갖는 "amide type" ($CH_3CONH-and-CONHCH_3$)과 N말단만이 methyl 구조를 갖는 "methyl type" ($CH_3NH-and-CONHCH_3$)의 2종류 모델을 준비하였다. 5량체 까지의 구조 최적화 계산 결과 3종류의 형태이성질체로 수렴이 되었다. 안정성이 높은 순서로 각각 ${\alpha}$ 나선형, PPII 유사형, ${\beta}$ 확장형으로 나타났으며, 사슬회전 방향이 서로 반대인 형태이성질체간의 에너지 값은 동일하게 나타났다 (5량체, "amide type" 좌 우회전형: ${\Delta}E=-1.05$, "methyl type" 좌 우회전형: ${\Delta}E=-1.62$). ${\alpha}$ 나선형의 모노머 단위당 에너지변화(${\Delta}E$)는 모노머의 증가와 함께 감소하였다.

Canonical Ensemble 로 代表된 系의 에너지 分布則 및 熱力學的牀態量의 道出에關하여 (A New Method on the Derivation of the Thermodynamic Quantities for a System Represented by the Canonical Ensemble)

  • 김순경
    • 대한화학회지
    • /
    • 제3권1호
    • /
    • pp.3-8
    • /
    • 1954
  • Fowler obtained thermodynamic quantities assuming the theory which could be derived by representing the system with microcanonical ensemble, in order to introduce the temperature T of the system proper, he considered the combined systems which are composed of the system proper and another arbitrary system that is in thermal contact with the former, and represented the combined system by a microcanonical ensemble, here, he used the steepest descent method in his calculation. This Fowler's treatment is not only unsatisfactory at the point of theoretical view but also he could not make the formulation of free energy of Helmholtz's so that this formular was forced to be assumed. From the point of Quantum Statistical Mechanical view, the materially closed system which is in an equilibrium state with the temperature T is best represented by canonical ensemble. At the actual derivation of the distribution law and thermodynamic quantities, however, in order to avoid the difficulty of calculation Tolman proceeded his calculation either representing the system proper by the grand-canonical ensemble or adding a certain limitation.

  • PDF

Loss of HCN from the Pyrimidine Molecular Ion: A Computational Study

  • Yim, Min Kyoung;Jung, Sun Hwa;Kim, Myung Soo;Choe, Joong Chul
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권12호
    • /
    • pp.4098-4102
    • /
    • 2012
  • The potential energy surface (PES) for the loss of HCN from the pyrimidine molecular ion has been explored using quantum chemical calculations. Possible reaction pathways to form five $C_3H_3N^{+{\bullet}}$ isomers have been obtained with Gaussian 4 model calculations. The rate constant for the HCN loss and the product branching ratio have been calculated using the Rice-Ramsperger-Kassel-Marcus theory on the basis of the obtained PES. The resultant rate constant agrees with the previous experimental result. By a kinetic analysis, it is proposed that the formation of $CH=CHC{\equiv}NH^{+{\bullet}}$ is favored near the dissociation threshold, while the formation of $CH=CHN{\equiv}CH^{+{\bullet}}$ is favored at high energies.

A Comparative QSPR Study of Alkanes with the Help of Computational Chemistry

  • Kumar, Srivastava Hemant
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권1호
    • /
    • pp.67-76
    • /
    • 2009
  • The development of a variety of methods like AM1, PM3, PM5 and DFT now allows the calculation of atomic and molecular properties with high precision as well as the treatment of large molecules with predictive power. In this paper, these methods have been used to calculate a number of quantum chemical descriptors (like Klopman atomic softness in terms of $E_n^{\ddag}\;and\;E_m^{\ddag}$, chemical hardness, global softness, electronegativity, chemical potential, electrophilicity index, heat of formation, total energy etc.) for 75 alkanes to predict their boiling point values. The 3D modeling, geometry optimization and semiempirical & DFT calculations of all the alkanes have been made with the help of CAChe software. The calculated quantum chemical descriptors have been correlated with observed boiling point by using multiple linear regression (MLR) analysis. The predicted values of boiling point are very close to the observed values. The values of correlation coefficient ($r^2$) and cross validation coefficient ($r_{cv}^2$) also indicates the generated QSPR models are valuable and the comparison of all the methods indicate that the DFT method is most reliable while the addition of Klopman atomic softness $E_n^{\ddag}$ in DFT method improves the result and provides best correlation.