
Vibrational Transition for FMO by Anharmonic Boson Operators Bull. Korean Chem. Soc. 2001, Vol. 22, No. 7 721

Numerical Calculation of Vibrational Transition Probability for the Forced Morse 
Oscillator by Use of the Anharmonic Boson Operators

Chang Soon Lee* and Yoo Hang Kim'

* Department of Chemistry, Changwon National University, Changwon 641-773, Korea 
‘Department of Chemistry and Center for Chemical Dynamics, Inha University, Incheon 402-751, Korea 

Received April 19, 2001

The vibrational transition probability expressions for the forced Morse oscillator have been derived using the 
commutation relations of the anharmonic Boson operators. The formulation is based on the collinear collision 
model with the exponential repulsive potential in the framework of semiclassical collision dynamics. The 
sample calculation results for H2 + He collision system, where the anharmonicity is large, are in excellent 
agreement with those from an exact, numerical quantum mechanical study by Clark and Dickinson, using the 
reactance matrix. Our results, however, are markedly different from those of Ree, Kim and Shin's in which they 
approximate the commutation operator Io as unity, the harmonic oscillator limit. We have concluded that the 
quantum number dependence in Io must be retained to get accurate vibrational transition probabilities for the 
Morse oscillator.
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Introduction

The Boson creation and annihilation operators for the 
harmonic oscillator are widely used in molecular vibrational 
energy transfer studies. This owes to their commutation 
relations, which make the interaction between the collision 
partners simpler and the Schrodinger equation easier to 
solve.1-11 The angular momentum eigenvector problem 
encountered in the analysis of vibrational spectra is also one 
of the similar commutator algebras using the Boson creation 
and annihilation operators.12,20-22

Despite these apparent advantages, the use of Boson crea
tion and annihilation operators requires that the vibrational 
motion of the colliding molecules be harmonic. Therefore, 
the Boson operator method can not be applied to molecules 
with large anharmonicity and/or with highly excited vibra
tional energy levels. Furthermore, this anharmonicity is known 
to have a significant effect, even on the lower vibrational 
energy levels of the polyatomic molecules and van der 
Waals molecules, which have shallow potential wells.

Recently Levine23 derived the commutation relations for 
the anharmonic Morse oscillator from the Boson operators 
of the harmonic oscillator. The anharmonic Boson operators 
and their commutation relations derived by Levine have 
been used as the standard algebraic method in the collisional 
vibrational energy transfer for the forced Morse oscillator, 
and they also have proved very useful as the angular 
momentum generator in the coupled Morse oscillators.13-22 
Ballhausen24 obtained the quantum mechanical solution of 
the forced Morse oscillator using the time-dependent step-up 
and step-down operators instead of the usual time-dependent 
perturbation theory. On the other hand, Ree et al.25 developed 
an approximate method to obtain the perturbed vibrational 
states of the forced Morse oscillator, using Levine's anharmonic 
creation and annihilation operators and their commutation 

relations and derived expressions for vibrational excitation 
due to molecular collisions. In their study, however, to make 
it easier to obtain the time evolution operator for the wave 
function, they neglected the quantum number dependence of 
the anharmonicity parameter in describing the basic operators 
for Morse oscillator. That is, they approximated the commu
tator between the anharmonic creation and annihilation 
operators as the identity operator, which is true only in the 
harmonic oscillator limit. This approximation, however, can 
significantly affect the vibrational transition probabilities for 
molecules with large anharmonicity, especially when one 
deals with high vibrational levels.

In the present study, we incorporate the quantum number 
dependence of the anharmonicity parameter into the basic 
operators for the Morse oscillator. We have derived expre
ssions for the final vibrational states and energy transfer 
probabilities of the Morse oscillator perturbed by molecular 
collisions. We have applied the expressions to a H2 + He 
collision system, which has large anharmonicity and test the 
validity of the derived expressions by comparing the results 
with those of other exact calculation.33 We have also shown 
the anharmonicity parameter dependence of the differential 
equations for the coefficients of the anharmonic Boson 
operators in the time evolution operator.

Algebraic Method

To handle the vibrational energy transfer problem for the 
forced Morse oscillator, it is essential to define the anharmonic 
Boson operators. In this section, we briefly summarize 
Levine's algebraic operator approach to the Morse oscil
lator.

Levine introduced a pair of Boson creation （시二 aN） and 
annihilation （a；, aN） operators with the following commuta
tion relations.11
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[a-, aU] = [ aN, aN] = 1 (1a)

[a+, aN] = [ aU, a^] = 0 (1b)

Here, U is the vibrational quantum number and N = x-1, 
where x° is the anharmonicity in the Morse oscillator energy 
expression

Eu = h^(u + 2) - ha)。Xo(u + 2) (2)

Levine showed that the basic operators representing the 
Morse oscillator could be formed from the harmonic Boson 
operators as follows.

Q = (2N)-1 /2 (aU aN + aNaU) (3a)

P = i( 2 N)-1 / 2( a+aN - aNaU) (3b)

I = N*a+a - aUaU) (3c)

Eo = N-(aU aU + aNQ (3d)

Here, P and Q are the basic operators for the Morse oscillator, 
derived from the harmonic creation and annihilation opera
tors. The operator I。approaches the identity operator I only 
in the harmonic limit, where the anharmonicity becomes zero. 
From these basic operators one can write the Morse oscillator 
Hamiltonian as H = h"P2 + Q )/2, where a。is the vibra
tional frequency of the Morse oscillator. If we write the harmonic 
oscillator Hamiltonian as H = (p + M(房 q2)/2M, then the 
position and momentum for the harmonic oscillator become 
q = h/(Ma。)1,2Q and p = (Mha。)1,2P, respectively. 
From Eqs. (3), one can obtain the commutation relation as 
follows.

[Q, P ] = iIo (4)
The anharmonic creation Q+) and annihilation ^厂)operators 

for the Morse oscillator can be obtained by adding or sub
tracting Eqs. (3a) and (3b).

A+ = 2-1 ,2(Q - iP) = N,2aUcTn (5a)

A~ = 2-1/ 2 (Q + iP) = N「"七认 (5b)

From these two operators one can obtain P and Q,

Q = 2-1‘ 2( A++ A-) (6a)

P = 2" 2i (A+- AT) (6b)

and the following commutation relations.

[I。, P ] = 2iXoQ (7a)

[I。，Q] = -2ixoP (7b)

[A~, A+] = I。 (7c)

[I。, A± ] = -2 x°A± (7d)

Also, in terms of anharmonic operators A+ and A", the Morse 
oscillator Hamiltonian becomes

H = ha(A+A- + 2i。) . (8)
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Vibration지 States for the Perturbed Morse Oscillator

We now write the Hamiltonian for the Morse oscillator per
turbed by a time-dependent force F(t) due to the interaction 
with an incident particle in the form

H( t) = 2 ha。(P2 + Q2) + (h/Ma。)“F( t )Q (9)

or, in terms of the creation and annihilation operators,

H( t) = ha0 ^A+A^ + 1-I。) + (h/2Ma。沪,2

x F (t)(A++ A。三 H + H( t). (10)

Long before (t = -8) or long after (t = + 8) collision, 
where the perturbation term vanishes23

H|N, u〉= ha。(u-x。^)|N, u〉. (11)

The Morse oscillator state |N, u〉can be generated from the 
vacuum state |。〉as follows.12,23,27

|N, U〉= [u!(N- u)!]-S(aU)U(寸叩〉 (12)

From these normalized basis states |N, u〉, one can obtain 
the eigenvalue equations as follows.23

丘。网 u〉= N, +〉 (13)

시N, u〉= (1-2xu)|N, u〉 (14)

The time-dependent Schrodinger equation for the forced 
Morse oscillator can be written as

ih 희辭 = [ H° + H( t)]|*(t)〉, (15)

where |*( t)〉is the vibrational state of the Morse oscillator 
induced by the perturbation term Hr(f), and can be expressed 
as a linear combination of the initial states |N, u〉. The 
solution to Eq. (15) can be written, in principle, in the form

|*(t)〉= ne어浪丿 |*(t。)〉三 U°(t, /。)|乎"。)〉, (16)
J = 0 _

where U(t, t。)is the time evolution operator, which converts 
the initial state |*( t。)〉= |N, u〉into the perturbed states 
|*( t)〉in accordance with the perturbation H(t). Therefore, 
GJ(t) terms in Eq. (16) are the time-dependent functions with 
complex values, and %t)'s represent the anharmonic 
Boson operators A+, A, A+A' and I。. Performing the time 
evolution operation on the initial state |N, u〉one obtains

|*(t)〉= exp{G3(t)[1-x()(u-1)]u} ©乂卩{&4(。(1—2*。力}

x {|(N,u〉
8 Gm(/)fU+m-1+z 느』n E。)

m=1 \ k=U

|N,u+m〉

+ Z으빼 廿 (1*。严1厂끼T"n,u-n〉 

z n!【야쓰1 L(u-n)!」
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+
8 8

££
m = 1 n = 1

Gm( t) G2( t) 
— 
m\n\(u -n)!

[u! (u-n + m)! ]'7 2 x Z。刀(|u--1+j)!(l-j)!

x

x |N, u-n + m〉},

'U-n

n(i-kxo、)v2
\k = U - 1

U - n + m - 1

n
k = U-n

(1 - kx0)1 ,2

(17)
which is a linear combination of all possible Morse oscillator 
states produced from the initial state |N, u〉. Here, the sum 
above m contains states that are higher than |N, u〉，whereas 
the sum over n contains the lower states. Thus, they 
represent the excited and de-excited vibrational states of the 
Morse oscillator due to the collision, respectively.

Formulation of Transition Probability

The probability of vibrational transition from the initial 
state |N, u〉to the final state |N, f〉can be written from Eq. 
(17) as

Pu—f = lim〈N, f|*( t ))12. (18)
t T 8

Here, l is the smaller of u and f.
To calculate the probabilities, one must evaluate G(t)'s in 

Eqs. (19) and (2。). To do this we express the Hamiltonian in 
Eq. (1。) in the following form.

4

H(t) = Z 사(t)Q, (22)
k=1

where 気's are the anharmonic operators A+, A", A+A_ and 
I。，and %k's are their coefficients. To determine G(t)'s, we 
must therefore find the relationship between the functions 
%k(t) and Gj( t). For this purpose, we first differentiate U(t, 
t。) with respect to t,

dU(t, t。) = § dGi(t)
dt Z dti=1

~ 4 -

d nexp[G(t)Q] . (23)
J =i -

Multiplying U尸 and introducing the Baker-Hausdorff theo- 
rem,31 we find

■ r

n exp[ Gj( t )Qj ]
丿=1

=Z aki( t)dk. (24)
k=1

From Eq. (22)-(24) we can thus obtain

Z 사(t)dk = ZZ 지라-aki(t)dk. (25)
k=1 i=1 k=1 d

x
i-1

nexp[ Gj( t )Q]

From Eqs. (17) and (18) one can obtain the excitation 
probability

Put f = uf G2f-u)exp(2G3 [ 1 - x° (u-1)]u}

「f-1 .

x exp[2GJ 1—2x°u)] [u!(f- u)!]-1 卩(1 -kx°)1,2
k = u

血ap [-Gj (t )dj ]

u

+ z
n=1

x

■ u-n qr f-1 .

n (1-kxo沪,2 n (1-kx。)1，2
k = u- 1 _||_k = u-n .

Gn1Gn2

n! (f - u + n)!(u-n)!

and the de-excitation probability

Put f = uf! G2(u-力 exp{2G3[ 1 - x。(u-1)]u}

x exp[2G』1-2x。u)]
[/!(u-/)!]-f n (1-kx。)"

Lk=u-i .

(19)

This equation leads to the following four differential equa
tions:

f - m

+ z
m=1

x

f - m

n (1-kx。)1,
k = u- 1

G1mG2m

m!(f- u + m)!(u-m)!

][k n m

(20)

Because of the presence of the k products containing the 
anharmonicity parameter, combining the two probabilities 
into one does not seem possible. However, in the harmonic 
oscillator limit, where x。becomes zero, the two expressions 
can be combined into the well-known probability expression 
for the harmonic oscillator.7,28-30

Put f = u!f!. G養-f exp( 2uG3 )exp( 2G4)

dG1 (t)--------
dt

八 2 dG2( t) K2
一 x°G1 (t)出 + S。--" dt K1

-2x°G1 (t) ―—— - ■-F(t) dt h (26a)

dG2 (t)--------
dt - ^S^~ + 2x0 G2(t) 〃- 一 주 F(t)K1 dt h (26b)

dG3 (t)--------
dt

_ .아)
一 -'K1

(26c)

dGi (t)--------
dt

-i[ 1+2x()G2(t)-2乂。&1(t)G2(t)]-1

「K3 G1 (t) + K 1 1 -1
x 아。 - ― 5 아。― - F(t)

L K1 2 h
(26d)

where

K = 1 + 2x°G1( t) GJ t) + 2x。G2( t) G2( t) (27a)
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K = (2xf -1 )Gi (t) - xo (3-2xo-6xf) G2 ((t)

-2 x0( 1-xo- 2xof) G1 (t )G2( t) (27b)

K = (1+2xo-2xof) G (t) + 2 xo( 1+ xo-2xf)

x G1(t)g2(t) (27c)

K4 = (2xof- 1 )G1 (t)G2(t) - xo( 1 - xo - 2xf )

x G2(t)G2(t) (27d)

Here f is the vibrational quantum number of the final state 
|N, f〉resulting from the initial state \N, u〉due to 
collisional interaction. Thus, Gj s can be determined by 
solving four differential equations subject to the initial 
conditions, G(to)=o. These simultaneous differential equations 
will be solved numerically. We note that in the limit x° T o 
these differential equations reduce to the following well- 
known equations for the harmonic oscillator, as they must.32

으으?旦 = - i®G1 (t) - ih「F( t) (28a)

G-L- = [皿으 (t) - ih「F( t) (28b)

으！羿 = - imo (28c)

으으羿 = -2 imo- ih「"F( t) (28d)

One can calculate the transition probabilities for the har
monic oscillator from Eqs. (21) and (28). In the next section, 
we will use these equations to calculate the vibrational transi
tion probabilities for the harmonic oscillator and compare them 
with those for the Morse oscillator.

Results and Discussion

To test the probability expressions for the Morse oscillator 
derived from the commutation relations of the anharmonic 
Boson operators, we have chosen the collinear H2 + He collision 
as our model system. The reason we have chosen this parti
cular system is two-fold. The first is that the H2 molecule has 
large anharmonicity, and the second is that the exact quantum 
mechanical (Clark and Dickinson; Ref. 33) and approximate 
semiclassical (Ree, Kim and Shin; Ref. 25) calculations are 
already available with which we can compare the results.

The interaction potential between the collision partners is also 
the simplest one, i.e., the exponential repulsive potential, which 
is the most often used potential for this kind of model calcu
lations.

V(z) = D exp(-z/시). (29)

Here z is the distance between He and the nearer H, and D 
and a are the steepness and the range parameter, respectively. 
Since z = R-Y (d + q), where R is the distance between the 
He atom and the center of mass of the H2 molecule, y the mass 
ratio y = mH/(mH + mH) = 1/2, d the equilibrium bond length 
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of H2, and q the vibrational amplitude of H2, respectively, the 
potential can be represented as

V(z) = V(R, q) = D exp(沏시)exp(「R/a) exp(qa) (3。) 

Expanding the exp(Yq/a) term into a power series in the 
vibrational amplitude coordinate q, gives

V(R, q) = D'exp(-R/시) + (D시)exp(-R/시)q + ...,
(31) 

where Dr = Dexp(*d/시). Therefore, the perturbing force 
F() in Eq. (9) becomes (D'y/시) exp (-R/시) and q = 
(h/Mmo 广 2Q .

Invoking the well-established semiclassical procedure in 
which the translational motion is treated classically, the 
collision trajectory is found to be34

exp[-R(t)/시]= sech2[(E/2 冋)1/2 (t/시)], (32)

where E is the collision energy and 卩 is the reduced mass of 
the collision system. The collision energy is symmetrized 
before and after the collision and is related to the total 
energy Et as E1/2 = 1/2[(ET -Eu>,-)1,2 + (ET -Ef ,2], 
where Em and Euf are the initial and final vibrational energies. 
The molecular spectroscopic constants are taken from the 
standard table 26 and the range parameter 시 is set at o.o2 nm, 
which is the most frequently used value in this type of model 
calculations.25,33,34

Our results are in excellent agreement with those from the 
exact quantum mechanical numerical calculation of Clark 
and Dickinson, using the reactance matrix method.33 To 
show this we have grouped together in Table 1 the transition 
probabilities for Morse (Pmo) and the harmonic oscillator 
(Pho), their ratios (Pmo/^ho) and harmonic scaling law 
(Putu+1/(u+1 )Pot 1) for the Morse oscillator at the 
collision energy £ =1. For example, for the u T u+1 
transitions Pmo's by Clark and Dickinson are 2.46 x 1o-4, 
1.25 x 1o-3, 5.29 x 1o-3, 1.92 x 1o-2 and 5.97 x 1o-2 for u = 
o, 1, 2, 3, 4, respectively, whereas those in the present study 
are 2.41 x 1o-4, 1.31 x 1o-3, 5.o9 x 1o-3, 1.59 x 1o-2 and 
4.58 x 1o-2, respectively. The small differences can be 
attributed to the difference in calculation methods (exact 
quantum mechanical 啓 semiclassical) and/or difference in 
the interaction potential (full exponential repulsive potential 
in Clark and Dickinson vs. expanded first order term in q in 
this work). Note that the differences between the two 
calculations are larger at high u than at low u. This is 
because the effect of the potential difference is expected to 
be more pronounced at higher vibrational levels. The 
possibility of multiple quantum transitions is omitted in our 
calculation and this omission leads to larger errors at larger u. 
Our results for other quantities Pho, Pmo/Pho and Put u+1 

/(u+ 1 )Pot 1 are in excellent agreement with those of 
Clark and Dickinson.

Figure 1 shows the transition probability ratios Pmo/Pho 
for various one quantum vibrational transitions against the 
reduced collision energy £ =E/hm°. Pmo is the vibrational 
transition probability for the Morse oscillator calculated using 
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Eq. (19) and Pho is the vibrational transition probability for 
the harmonic oscillator calculated using Eq. (21). As can be 
seen from Figure 1, the ratio Pmo/Pho for the lower 
vibrational levels u = 0-2 when the anharmonicity effect is 
small increases slowly as £ increases. For the higher 
vibrational levels u = 3-5, however, the ratio increases rapidly 
with £ at low collision energies, reaches maximum, and then 
decreases at high collision energies.

This clearly shows that the vibrational transition for the 
Morse oscillator is quite different from that for the harmonic 
oscillator at higher vibrational levels where the anharmo- 
nicity effect becomes increasingly important. For example, 
the ratios Pmo/Pho for u = 0 T 1 transition at £ = 0.5, 1.0, 
1.5, 2.0 and 3.0 are 0.01, 0.48, 0.85, 1.22 and 1.31, respec
tively, whereas those for u = 5 T 6 transitions are 14.2, 
15.8, 12.3, 9.65 and 4.75, respectively, at the same £ values. 
The effect of anharmonicity on the transition probability becomes 
much more pronounced as u increases.

For the harmonic oscillator, the so-called harmonic scaling 
law should hold, Putu+1/(u+1)P°t 1= 1. As can be 
seen from Table 1, this law holds well for the harmonic 
oscillator by both exact quantum mechanical numerical 
calculation of Clark and Dickinson and semiclassical 
operator algebra calculation in the present study. As u 
increases from 1 to 5 the ratios from the Clark and 
Dickinson's results vary from 0.986 to 0.944, whereas those 
from our results vary from 0.997 to 0.999.

For the Morse oscillator, however, the law does not hold at 
all due to the anharmonicity effect. See the last column of 
Table 1 and Figure 2(a). The ratio Put u+/(u+ 1 )P° t 1 

increases rapidly with u rather than staying close to unity in 
both calculations. This fact is in complete disagreement with 
the results of Ree et al.'s approximate operator algebraic 
calculation.25 Their results at £ = 1.0 are shown in Figure 
2(b) and the ratio decreases linearly with u and is less than 
unity at all u.

This apparently opposite trend can be attributed to the differ
ence in operator I0, one of the basic operators for the Morse oscil
lator. This operator reduces to the identity operator only in 
the harmonic limit. That is, liT"0|N,f〉= lim« 1 - 2xf)|N,f〉 
-|N,f、、). We have alreadyx°defined this operator in Eqs. (3c) 

and (14). When I)is inserted in Eq. (25), 2xf terms appear in 
the differential equations (26). These terms are responsible 
for the rapid increase in probabilities with increasing u .
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In carrying out the time-evolution operation Ree et al., how
ever, approximated Gas Gb2(t) = (2MhcD)) f F(t)exp

—8
[土i幼(爲土工。)t]dt. In addition to this approximation, they 
then took the harmonic oscillator limit for I), i.e., they approxi
mated I)as unity, IANf) = |N,f〉for ease of calculation, 
which is correct only when x。approaches zero. Ther efore, 
G1,2(t) was approximated as Gb2(t) - (2MhQ)) f exp

—8
[±i아)( 1 + X0)t]dt. And also, the term in the exponent 匹 ± 
xo) was replaced by (1 ± xQ, which has no quantum number 
(f dependence. These approximations cause the ratio Put u+1 

/ (u+ 1 )Po t 1 to decrease with increasing u.
of course, when we replace the operator I0 with identity 

operator I in our formulation, our results also reduce to the 
results by Ree et al., as they must. Specifically, when we 
replace I)with I in carrying out Qk(A+, A", A+A", I)) 
operations in Eq. (25), the following Kis are obtained

K1 = 1 + 2x0G1( t) G2( t) + 2x0 G2( t) G2( t) (33a)

Figure 1. The ratios Pmo/Pho for one quantum vibrational transi
tions as a function of the reduced collision energy £ = E/h 아.

Table 1. Vibrational transition probabilities of H2 + He for the harmonic oscillator (H.O.) and Morse oscillator (M.O.) and the harmonic 
scaling relation P。— u+1/( 바1)Pot 1 for Morse oscillator at collision energy £ =1

aExact numerical calculation results by Clark and Dickinson (Ref. 33). bThis work. "Parentheses include power of ten.

Vibrational 
Transition

H.O. M.O. Pmo/Pho Put 바1/( 마1)P0t1

PCD。 PY PCD Pt PCD Pt PCD Pt

0 — 1 7.20(-4)c 7.07(-4) 2.46(-4) 2.41(-4) 0.34 0.34 1.0 1.0
1—2 1.42(-3) 1.41(-3) 1.25(-3) 1.31(-3) 0.88 0.93 2.5 2.7
2 — 3 2.10(-3) 2.12(-3) 5.29(-3) 5.09(-3) 2.52 2.40 7.2 7.0
3—4 2.76(-3) 2.82(-3) 1.92(-2) 1.59(-2) 6.96 5.64 19.5 16.5
4 — 5 3.40(-3) 3.53(-3) 5.97(-2) 4.58(-2) 17.6 12.8 48.5 38.0
5—6 — 4.23(-3) — 1.15(-1) — 27.2 — 79.5
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K2 = — G1(t) — x0(3-2x0 )G1 (t )G2 (t)

+ 2 x0( 1-xo) G3 G2( t) (33b)

K = (1+2x0) Gz( t) + 2x0 (1+ xo) Gi( t) G2( t) (33c)

K4 = - G1(t)G2(t) - x°( 1-x0)G2(t)G2(t) (33d)

in which all the 2xf terms in Eq. (27) have vanished. The 
Put u+ 1/(u +1 )P° -1 ratios calculated with these new K's 
are shown in Fig. (2c), and we can see that the results 
reproduce exactly those of Ree et al in Fig. (2b).

Conclusion

We have derived vibrational transition probability expre
ssions for the Morse oscillator, using anharmonic creation 
and annihilation operator algebra. The collinear collision model 
and the exponential repulsive potential were employed in the 
formulation.

Our model can be extended to other types of interaction 
potentials, even to the ab initio numerical potentials. However, 
they must first be converted into a form that has functional 
dependency on the vibrational displacement coordinate.

Sample calculation results for H2 + He collision system in 
which the anharmonicity effect is large are in excellent agree
ment with those obtained from exact numerical quantum 
mechanical calculations by Clark and Dickinson.33 Our 
results, however, are markedly different from those of Ree et 
al.,25 who performed essentially the same calculation but re
placed the quantum number dependent commutation operator 
I0 with the unit operator I. Our results show that the integrity 
of the I0 operator must be kept and its operation is essential 
in the anharmonic vibrational transitions, especially for high

Figure 2. Dependence ofPu—u+1/(바1)P0f on vibrational quantum 
number u. (a) This work (b) The result from Eq. (33) (c) The result 
by Ree et al.25

energy levels.
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