DOI QR코드

DOI QR Code

Loss of HCN from the Pyrazine Molecular Ion: A Theoretical Study

  • Received : 2011.04.15
  • Accepted : 2011.05.23
  • Published : 2011.07.20

Abstract

The potential energy surface (PES) for the loss of HCN or HNC from the pyrazine molecular ion was determined based on quantum chemical calculations using the G3//B3LYP method. Four possible dissociation pathways to form four $C_3H_3N^{+{{\bullet}}$ isomers were examined. A Rice-Ramsperger-Kassel-Marcus quasi-equilibrium theory model calculation was performed to predict the dissociation rate constant and the product branching ratio on the basis of the obtained PES. The resultant rate constant for the HCN loss agreed with the previous experimental result. The kinetic analysis predicted that the formation of $CH=CHN{\equiv}CH^{+{\bullet}}+HCN$ was predominant, which occurred by three consecutive steps, a C-C bond cleavage to form a linear intermediate, a rearrangement to form an H-bridged intermediate, and elimination of HCN.

Keywords

References

  1. Porter, Q. N. Mass Spectrometry of Heterocyclic Compounds, 2nd ed.; John Wiley & Sons: New York, 1985.
  2. Baer, T.; Hase, W. L. Unimolecular Reaction Dynamics: Theory and Experiments; Oxford University Press: New York, 1996.
  3. Choe, J. C. Int. J. Mass Spectrom. 2004, 237, 1. https://doi.org/10.1016/j.ijms.2004.06.008
  4. Choe, J. C. J. Phys. Chem. A 2006, 110, 7655. https://doi.org/10.1021/jp0612782
  5. Choe, J. C. Chem. Phys. Lett. 2007, 435, 39. https://doi.org/10.1016/j.cplett.2006.12.086
  6. Choe, J. C. J. Phys. Chem. A 2008, 112, 6190. https://doi.org/10.1021/jp802641c
  7. Choe, J. C. Int. J. Mass Spectrom. 2008, 278, 50. https://doi.org/10.1016/j.ijms.2008.08.003
  8. Choe, J. C. Int. J. Mass Spectrom. 2009, 286, 104. https://doi.org/10.1016/j.ijms.2009.07.007
  9. Choe, J. C.; Cheong, N. R.; Park, S. M. Int. J. Mass Spectrom. 2009, 279, 25. https://doi.org/10.1016/j.ijms.2008.09.013
  10. Kim, S. Y.; Choe, J. C. Int. J. Mass Spectrom. 2010, 294, 40. https://doi.org/10.1016/j.ijms.2010.05.006
  11. Kim, S. Y.; Choe, J. C. Int. J. Mass Spectrom. 2010, 295, 65. https://doi.org/10.1016/j.ijms.2010.07.005
  12. Kim, S. Y.; Choe, J. C. Bull. Korean Chem. Soc 2010, 31, 2589.
  13. Billes, F.; Klostermann, K. ACH-Models in Chemistry 1997, 134, 199.
  14. Lin, M. F.; Dyakov, Y. A.; Tseng, C. M.; Mebel, A. M.; Lin, S. H.; Lee, Y. T.; Ni, C. K. J. Chem. Phys. 2005, 123, 054309. https://doi.org/10.1063/1.1994849
  15. Lin, M. F.; Dyakov, Y. A.; Tseng, C. M.; Mebel, A. M.; Lin, S. H.; Lee, Y. T.; Ni, C. K. J. Chem. Phys. 2006, 124, 084303. https://doi.org/10.1063/1.2174011
  16. Yim, M. K.; Choe, J. C. J. Phys. Chem. A 2011, ASAP.
  17. Dargel, T. K.; Koch, W.; Lavorato, D. J.; McGibbon, G. A.; Terlouw, J. K.; Schwarz, H. Int. J. Mass Spectrom. 1999, 185, 925. https://doi.org/10.1016/S1387-3806(98)14193-3
  18. Karapanayiotis, T.; Dimopoulos-Italiano, G.; Bowen, R. D.; Terlouw, J. K. Int. J. Mass Spectrom. 2004, 236, 1. https://doi.org/10.1016/j.ijms.2004.04.017
  19. Vall-Llosera, G.; Coreno, M.; Erman, P.; Huels, M.; Jakubowska, K.; Kivimaki, A.; Rachlew, E.; Stankiewicz, M. Int. J. Mass Spectrom. 2008, 275, 55. https://doi.org/10.1016/j.ijms.2008.05.019
  20. Fridh, C.; Asbrink, L.; Jonsson, B. O.; Lindholm, E. Int. J. Mass Spectrom. Ion Phys. 1972, 9, 485. https://doi.org/10.1016/0020-7381(72)80032-9
  21. Buff, R.; Dannacher, J. Int. J. Mass Spectrom. Ion Processes 1984, 62, 1. https://doi.org/10.1016/0168-1176(84)80065-8
  22. Amunugama, R.; Rodgers, M. T. Int. J. Mass Spectrom. 2000, 195, 439. https://doi.org/10.1016/S1387-3806(99)00145-1
  23. NIST Chemistry WebBook, NIST Standard Reference Database Number 69.
  24. Frisch, M. J. T., G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, revision A. 02; Gaussian, Inc., Wallingford CT, 2009.
  25. Baboul, A. G.; Curtiss, L. A.; Redfern, P. C. J. Chem. Phys. 1999, 110, 7650. https://doi.org/10.1063/1.478676
  26. Beyer, T.; Swinehart, D. R. ACM Commun. 1973, 16, 379. https://doi.org/10.1145/362248.362275
  27. Scott, A. P.; Radom, L. J. Phys. Chem. A 1996, 100, 16502. https://doi.org/10.1021/jp960976r
  28. Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Rassolov, V.; Pople, J. A. J. Chem. Phys. 1998, 109, 7764. https://doi.org/10.1063/1.477422
  29. Lifshitz, C. Adv. Mass Spectrom. 1989, 11, 713.
  30. Lias, S. G.; Bartmess, J. E.; Liebman, J. F.; Holmes, J. L.; D., L. R.; Mallard, W. G. J. Phys. Chem. Ref. Data 1988, 17 (Suppl. No. 1).

Cited by

  1. Observation and Identification of Metastable Excited States in Ultrafast Laser-Ionized Pyridine vol.23, pp.5, 2012, https://doi.org/10.1007/s13361-012-0346-6
  2. Loss of HCN from the Pyrimidine Molecular Ion: A Computational Study vol.33, pp.12, 2011, https://doi.org/10.5012/bkcs.2012.33.12.4098
  3. Dissociation of the Pyridazine Molecular Ion vol.35, pp.3, 2011, https://doi.org/10.5012/bkcs.2014.35.3.721