• Title/Summary/Keyword: quantum calculation

Search Result 168, Processing Time 0.027 seconds

Molecular Nodeling of Complexation of Alkyl Ammonium Ions by p-tert-Butylcalix[4]crown-6-ether

  • Choe, Jong In;Kim, Gwang Ho;Jang, Seok Gyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.5
    • /
    • pp.465-470
    • /
    • 2000
  • The conformations and energies of p-tert-butylcalix[4] crown-6-ether (1) and its alkyl ammonium complexes have been simulated by AM1 semi-empirical quantum mechanics and molecular mechanics calculations using a variety of forcefields (MM2, MM+, CVFF). We performed molecular dynamics calculations to simulate the behavior of these coplexes primartily focusing on the three representative conformations (cone, partial cone, 1,3-alternate) of host molecule 1. When we performed AM1 semi-empirical and molecular mechanics calculations, the one conformation was generally found to be most stable for all the employed calculation methods. The primary binding site of host 1 for the recognition of alkyl ammonium guests was confirmed to be the central part of the crown moiety. The complexation enthalpy calculations revealed that the alkyl amonium cations having smaller and linear alkyl group showed the better complexation efficiencies when combined with p-tert-butylcalix[4]crown-6-ether, that is in satisfactory agreement with the experimental results.

Neutron Cross Section Evaluation on Dy Isotopes

  • Lee, Y. D.;J. H. Chang
    • Nuclear Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.154-164
    • /
    • 2002
  • Neutron cross section data on Dy-160, Dy-161, Dy-162, Dy-163 and Dy-164 were calculated and evaluated in the energy range of 1 keV to 20 MeV using a spherical optical model, statistical model and pre-equilibrium model. The energy dependent optical model potential parameters were obtained based on the recent experimental data. The width fluctuation correction in Hauser-Feshbach particle decay and the quantum mechanical approach in pre-equilibrium analysis were introduced and gave a better cross section calculation in EMPIRE-II. The total, elastic scattering and threshold reaction cross sections were evaluated and compared with the evaluated files. The model calculated (n, tot), (n, ${\gamma}$) and (n, p) cross sections were in good agreement with the experimental data in the measured energy range. The results will be applied to ENDF/B-VI for data improvement.

Droplet size prediction model based on the upper limit log-normal distribution function in venturi scrubber

  • Lee, Sang Won;No, Hee Cheon
    • Nuclear Engineering and Technology
    • /
    • v.51 no.5
    • /
    • pp.1261-1271
    • /
    • 2019
  • Droplet size and distribution are important parameters determining venturi scrubber performance. In this paper, we proposed physical models for a maximum stable droplet size prediction and upper limit log-normal (ULLN) distribution parameters. For the proposed maximum stable droplet size prediction model, a Eulerian-Lagrangian framework and a Reitz-Diwakar breakup model are solved simultaneously using CFD calculations to reflect the effect of multistage breakup and droplet acceleration. Then, two ULLN distribution parameters are suggested through best fitting the previously published experimental data. Results show that the proposed approach provides better predictions of maximum stable droplet diameter and Sauter mean diameter compared to existing simple empirical correlations including Boll, Nukiyama and Tanasawa. For more practical purpose, we developed the simple, one dimensional (1-D) calculation of Sauter mean diameter.

Subtractively Normalized Interfacial Fourier Transform Infrared Spectroscopic Study of Cyanide Ions at Gold Electrode

  • Son, Dong-Hee;Kim, Kwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.5
    • /
    • pp.357-360
    • /
    • 1994
  • The adsorption of cyanide ion on the gold electrode has been investigated by the subtractively normalized interfacial Fourier transform infrared spectroscopy (SNIFTIRS). The observations made by SNIFTIRS were consistent with those obtained by the polarization modulated Fourier transform infrared spectroscopy. According to the surface selection rule, cyanide ion appeared to adsorb on gold via either carbon or nitrogen lone pair electrons assuming a perpendicular orientation with respect to the metal surface. The possibility of presence of bridge-bound species seemed very infeasible. From the ab initio quantum mechanical calculation, adsorbate-to-metal bonding appeared to occur mainly via the $5{\sigma}$ donation from carbon to Au.

Computation of Refractive Indices of Corona Viruses through Reverse Calculation

  • Kuppuswamy, Srinivasan;Swain, Kaliprasanna;Nayak, Suryakanta;Palai, Gopinath
    • Current Optics and Photonics
    • /
    • v.4 no.6
    • /
    • pp.566-570
    • /
    • 2020
  • The present paper computes the refractive indices of different corona viruses (H5N1, H5N2, H9N2, H4N6, FAdV and IBV) through reflectance analysis of a virus solution. The computational analysis indicates that the refractive indices of all viruses are negative at the signal of 412 nm. Further the numerical output shows that the infectious bronchitis viruses (family of novel corona viruses, COVID-19) have higher negative refractive indices as compared to other corona viruses. Finally refractive indices of the family of COVID-19 are investigated with respect to the EID (Electronic infusion Device) concentration of the viruses, showing that the refractive index which ranges from "-0.96725 to -0.999998" corresponds to '0.01 to 10000' EID virus concentration.

Nystatin Drug as an Effective Corrosion Inhibitor for Mild Steel in Acidic Media- An Experimental and Theoretical Study

  • Mehmeti, Valbone
    • Corrosion Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.21-31
    • /
    • 2022
  • Potentiodynamic polarization, EIS measurements, quantum chemical calculations, and molecular dynamic simulations were used to investigate the corrosion behavior of mild steel in 0.5 M aqueous hydrochloric acid medium in the presence or absence of nystatin drug. Potentiodynamic tests suggested that this molecule could act as a mixed inhibitor due to its adsorption on the mild steel surface. The objective of this study was to exploit theoretical calculations to gain a better understanding mechanism of inhibition. Calculating the adsorption behavior of the investigated molecule on Fe (1 1 0) surface was accomplished using Monte Carlo simulation. Molecules were also investigated using Density Functional Theory (DFT), specifically PBE functional, in order to identify the link between molecular structure and corrosion inhibition behavior of the compound under investigation. Adsorption energies between nystatin and iron were estimated more accurately by utilizing Molecular Mechanics calculation with Periodic Boundary Conditions (PBC). Estimated theoretical parameters significantly assisted our understanding of the corrosion inhibition mechanism exhibited by this molecule. They were found to be in accord with experimental results.

Cyclotron Resonance of the Wannier-Landau Transition System Based on the Ensemble Projection Technique

  • Jung-Il Park
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.27 no.4
    • /
    • pp.28-34
    • /
    • 2023
  • We study the linear-nonlinear quantum transport theory of Wannier-Landau transition system in the confinement of electrons by a square well confinement potential. We use the projected Liouville equation method with the ensemble density projection technique. We select the dynamic value under a linearly oscillatory external field. We derive the dynamic value formula and the memory factor functions in three electron phonon coupling systems and electron impurity coupling systems of two transition types, the intra-band transitions and inter-band transitions. We obtain results that can be applied directly to numerical analyses. For simple example of application, we analyze the absorption power and line-widths of ZnO, through the numerical calculation of the theoretical result in the Landau system.

Quantum Chemical Calculation of NO Decomposition over Cu-Y Zeolite (Cu-Y 제올라이트상의 NO분해반응에 대한 양자화학적 해석)

  • Kim, Myung-Chul
    • Applied Chemistry for Engineering
    • /
    • v.7 no.2
    • /
    • pp.321-325
    • /
    • 1996
  • Quantum chemical calculations are used to characterize the decomposition of nitrogenmonoxide over $Cu^{n+}$-Y zeolite. The method of theoretical calculations, such as CNDO/2, have been applied to cluster models representing cation sites in zeolite to obtain total energies, LUMO energies, and Wiberg bond orders. The calculated total energies and bond orders of cluster models showed the reaction mechanism of NO decomposition over $Cu^{n+}$ site in zeolite framework. The suggested cluster models of varying Si/Al ratios studied with exchange cations in the $Cu^+$ and in the $Cu^{2+}$ states. And the calculated LUMO energies can predict L acidifies of cluster models. The results from these experiments showed the possibility of the mechanism of NO decomposition, progressing adsorption of NO, conversion to $N_2$ and $O_2$, desorption of $N_2$ and $O_2$ in sequence. The L acidity of $Cu^{2+}$ ion in cation site is more strong than $Cu^+$.

  • PDF

Synthesis, Crystal Structure and Quantum Chemistry of a Novel Schiff Base N-(2,4-Dinitro-phenyl)-N'-(1-phenyl-ethylidene)-hydrazine

  • Ji, Ning-Ning;Shi, Zhi-Qiang;Zhao, Ren-Gao;Zheng, Ze-Bao;Li, Zhi-Feng
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.4
    • /
    • pp.881-886
    • /
    • 2010
  • A novel Schiff base N-(2,4-dinitro-phenyl)-N'-(1-phenyl-ethylidene)-hydrazine has been synthesized and structurally characterized by X-ray single crystal diffraction, elemental analysis, IR spectra and UV-vis spectrum. The crystal belongs to monoclinic with space group P21/n. The molecules are connected via intermolecular O-$H{\cdots}O$ hydrogen bonds into 1D infinite chains. The crystal structure is consolidated by the intramolecular N-$H{\cdots}O$ hydrogen bonds. weak intermolecular C-$H{\cdots}O$ hydrogen bonds link the molecules into intriguing 3D framework. Furthermore, Density functional theory (DFT) calculations of the structure, stabilities, orbital energies, composition characteristics of some frontier molecular orbitals and Mulliken charge distributions of the title compound were performed by means of Gaussian 03W package and taking B3LYP/6-31G(d) basis set. The time-dependent DFT calculations have been employed to calculate the electronic spectrum of the title compound, and the UV-vis spectra has been discussed on this basis. The results show that DFT method at B3LYP/6-31G(d) level can well reproduce the structure of the title compound.

A Study on the Optimal Position for the Secondary Neutron Source in Pressurized Water Reactors

  • Sun, Jungwon;Yahya, Mohd-Syukri;Kim, Yonghee
    • Nuclear Engineering and Technology
    • /
    • v.48 no.6
    • /
    • pp.1291-1302
    • /
    • 2016
  • This paper presents a new and efficient scheme to determine the optimal neutron source position in a model near-equilibrium pressurized water reactor, which is based on the OPR1000 Hanul Unit 3 Cycle 7 configuration. The proposed scheme particularly assigns importance of source positions according to the local adjoint flux distribution. In this research, detailed pin-by-pin reactor adjoint fluxes are determined by using the Monte Carlo KENO-VI code from solutions of the reactor homogeneous critical adjoint transport equations. The adjoint fluxes at each allowable source position are subsequently ranked to yield four candidate positions with the four highest adjoint fluxes. The study next simulates ex-core detector responses using the Monte Carlo MAVRIC code by assuming a neutron source is installed in one of the four candidate positions. The calculation is repeated for all positions. These detector responses are later converted into an inverse count rate ratio curve for each candidate source position. The study confirms that the optimal source position is the one with very high adjoint fluxes and detector responses, which is interestingly the original source position in the OPR1000 core, as it yields an inverse count rate ratio curve closest to the traditional 1/M line. The current work also clearly demonstrates that the proposed adjoint flux-based approach can be used to efficiently determine the optimal geometry for a neutron source and a detector in a modern pressurized water reactor core.