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Abstract We study the linear-nonlinear quantum 

transport theory of Wannier-Landau transition system 

in the confinement of electrons by a square well 

confinement potential. We use the projected Liouville 

equation method with the ensemble density 

projection technique. We select the dynamic value 

under a linearly oscillatory external field. We derive 

the dynamic value formula and the memory factor 

functions in three electron phonon coupling systems 

and electron impurity coupling systems of two 

transition types, the intra-band transitions and 

inter-band transitions. We obtain results that can be 

applied directly to numerical analyses. For simple 

example of application, we analyze the absorption 

power and line-widths of ZnO, through the numerical 

calculation of the theoretical result in the Landau 

system. 

 

Keywords Cyclotron resonance, Wannier-Landau 

transition, line-widths, absorption power, memory 
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Introduction 

 

It is well known the Landau splitting system is that 

the electronic state in a crystal, in the presence of 

static magnetic field applied along the z-axis, is 

quantized in the x–y plane.1,2 In addition, an 

electromagnetic wave is applied to the system, the 

electrons absorb the proper photon energies to make 

magneto-optical transitions, among which cyclotron 

resonance (CR) is the most typical one.3 So far quite 

many theories have been reported for CR electron 

interacting with phonon (or impurity) in 

semiconductor. The Wannier-Landau transition 

system (WLTs) is that the electronic state in a crystal, 

in the presence of static magnetic field applied along 

the z-axis and static electric field applied along the 

x-axis, is quantized in the x–y plane with the x 

directional electric field dependency. Since the 

WLTs has the magnetic field and also electric field 

dependency, research in quantum transition theory of 

WLTs may be important in investigating the 

microscopic scattering phenomena of many 

condensed matter systems. The main purpose of this 

work is to investigate the linear-nonlinear effect of 

the induced dynamic value due to polarizability. 

Early studies were mainly based on linear schemes 

and nonlinear response studies were performed only 

in limited. 

Among those low-dimensional systems, 

semiconductor optoelectronic devices, such as laser 

diodes, optical waveguides, and photo detectors, have 

important applications in optical communication 

systems. In order to understand the physics and the 

operational characteristics of these optoelectronic 

devices, we need to develop a quantum statistical 
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method. Thus the quantum statistical study of 

low-dimensional electron systems is of great 

importance in condensed material systems. 

Theoretical studies of CR in quasi-two dimensional 

(Q2D) quantum well structures have been in active 

progress over the last several years.4-7 There are 

several methods to obtain line-widths in response 

function.8-14 The theoretical studies performed so far 

on high electric field transport are usually based on 

the following methods: the Green’s function 

approach, Feynman’s path integral approach, the 

Wigner representation approach, and the ensemble 

density projection technique (EDPT).15-20 Despite the 

fact that all these methodologies are quite reasonable, 

the nonlinear behavior has been investigated in 

limited schemes. Using the EDPT, we will derive the 

integrodifferential equation of a dynamic variable, 

and obtain a response function in Fourier-Laplace 

transformed space. In first step, the result contains a 

nonlinear response term which is not determined. We 

will expand the linear memory factor function (MFF) 

in a series form. Through the continuous 

approximation of quantum state integration, we 

obtain final result of the dynamic value and MFF in 

integration form.  

The interest in zinc oxide (ZnO) is fueled and fanned 

by its prospects in optoelectronics applications owing 

to its direct wide band gap ( 3.3gE  eV ). For simple 

example of application, we analyze the absorption 

power and line-widths of ZnO, through the numerical 

calculation of the theoretical result in the Landau 

splitting system. Finally, we shall be devoted to some 

discussion and draw conclusions. 

 

 

The Expansion of the Memory Factor Function 

 

If we consider the case that the induced the dynamic 

value direction k ( etcz,y,x, ) is same to the external 

field direction l ( etcz,y,x, ), as lk = , 

),(0}{ lkIfLJTr slkkl == 
, and 0)( =lkJ  . Thus we 

must consider the case that the induced dynamic 

value direction k ( etcz,y,x, ) is differ to the external 

field direction l ( etcz,y,x, ), as lk  . Since 
sH  

contains the diagonal Hamiltonian (the main particles 

Hamiltonian and the background particles 

Hamiltonian), 
dH , and the non-diagonal 

Hamiltonian (the interaction Hamiltonian between 

the main particles and background particles), 
vH , we 

can divide the corresponding Liouville operator as, 

vds LLL + . So, we can divide the MFF into four 

terms as 
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Using the properties of projection operator, we obtain 

the relation for an arbitrary operator X , 
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Then, the first term I  and the second term II  are 

zero and 

Bslkdk

e

kl

LXQLJTr
i




}{)( 


 

Bsldk

e

kl

LXLJTr
i




= }{)( 


Bslk

e

Bsldk

e

kl

LXJTrLLJTr
i




− }{}{)
)(

(
2




      (7) 

then, the third term III  is zero. Here 
B is the 

ensemble average of background particle states (for 

example, phonon or impurity state). Since the 

average of odd background terms are zero, we use the 

the useful relation as bellows, 

Bsvk

e LLYQTr  }'{ 
Bsv

e LYLTr = }'{  .        (8) 
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Using the conventional series expansion method, we 

expand the propagator )( lkG   as 

 =
−


r

r

n

n

dddvk

n

n

ddd

skl

lk GPLGLQGPLG
LQ

G }][{][
1

)(





 

ddvkddddd GGLQGGPLGG ++++= ...... ,         (9) 

where the diagonal propagator is 

 

dl

ld
L

G
−

=





1
)(

,                         (10) 

Thus then, with weak interacting system 

approximation in pair interacting system, the MFF 

can be reduced to simple form, as bellows, 

Bslvldvk

e

kl

lkl LLGLJTr
i




 })({)()( 


.         (11) 

We will apply the MFF in the electron phonon 

interaction system and the electron-impurity 

interaction system. 

 

 
 

Figure 1. Ring diagram contribution to the scattering 

system. 

 

 

The Formula of the Absorption in Wannier 

-Landau Level System 

 

We suppose that an oscillatory electric field 

)exp()( 0 tiEtE =  is applied along the z-axis, which 

gives the absorption power delivered to the system as 

)}(Re{)2/()( 2

0  EP  , where "Re" denotes the real 

component and )(  is the optical  conductivity 

tensor which is the coefficient of the dynamic value 

formula. The absorption power can be represented in 

the optical quantum transition LPs. We will derive 

the line-widths (or absorption power formula) in 

interacting system. We consider the electron-phonon 

interacting system; then, we have the Hamiltonian of 

the system as  

( ) ( )+

−

+++ +++=++=  qq

q

qqq

q
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,00 
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(12) 

Here 
eH  is the electron Hamiltonian, 

0h  is a 

single-electron Hamiltonian, 
PH  is the phonon 

Hamiltonian and V  is the electron-phonon (or 

impurity) interaction Hamiltonian. The )( 21

+bb are the 

annihilation operator (creation operator) of boson 

particle, and q


 is phonon (or impurity) wave vector. 

The interaction Hamiltonian of electron-phonon (or 

impurity) interacting system is 

( ) ( )+

−

+ + qq

q

bbaaqCV 





,

,

 where the coupling matrix 

element of electron-phonon interaction ( )qC  ,
 is  

( )   |)exp(|, rqiVqC q

 , r


 is the position 

vector of electron and 
qV  is coupling coefficient of 

the materials. 

We also select the system as the induced dynamic 

value system under the lineally oscillatory external 

field since this case during application of the 

response theory to real system because of that this 

case contains the more general results than other 

cases. The dynamic value operator caused by the 

linearly polarized external field of frequency   

consider as,  

L

x

R
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external fields., )( L

x

R

x JJ , represent the right linearly 

polarization current(RLPC) (left linearly polarization 

current(LLPC)), which is induced from right to left 

(from left to right) through x-axis, and the Liouville 

operator of the external field consider as  
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for an arbitrary operator X .  

The MMF of right(or left) linear polarization term, 

)()(

l

R

kl  (or )()(

l

L

kl  ) is complex as, 

( )c
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R

kl  )()()( i )( +=  (or 
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L
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L

kl  )()()( i  )( += ). In most case, the 

imaginary part of the MMF, )(Im )()(

l

R

kl

R

total   (or 

)(Im )()(

l

L

kl

L

total  ) give the line-shift of response 

type formula and the real part of the MMF, 
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l

R

klc

R

total   (or ( ) )(Re )()(

l

L

klc

L

total   ) give 

the half-width of response type formula. In most case, 

the imaginary part of the MMF, )(Im )()(

l

R

kl

R

total   

(or )(Im )()(

l

L

kl

L

total  ) are neglected in real system 

as a small vale term 

Using this interaction parameter, we obtain the final 

result for the line-shift, In continuous approximation, 

the interaction matrix part in the square quantum well 

potential (SQWP) system are as below, 

zzz
qkkq
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Then, through the continuous approximation, we 

obtain final result of the dynamic value formula as, 
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In the ohm formula as, ( ) )()(  EJ = , here 

)(  is the conductivity , and the absorption power, 
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and the line-width, ( )o
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where, the terms of electron-phonon interacting parts 

are  
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with the interacting matrix, the S
~

-matrix, being 
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We use *

00.19m m=  and 
00.7m m=  which are the 

effective masses of constants of ZnO are 
3 34.82 10 =  kg /m , 34.28 10slv =  m /s  is the 

longitudinal sound velocity, 31.81 10stv =  m /s  

is the transverse sound velocity, 
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48.58 10k −=  eV /K , 235 = K  and 2 22.98 10K −=  . 

The speed of sound 
sv  in Eq. (20) shall be replaced 

by the average value sv  of 
slv  and 

stv , as 

( ) / 2s sl stv v v= +  and the energy gap ( )g T  replaced by 

2.56g = eV  in approximation by noting that the 

variation against the temperature is very small. More 

accurate value of ( )g T  can be obtained by Eq. (22) 

if the characteristic constants k  and   are 

available. We choose 12 2 2

0 8.854 10 −=  c /Nm .21 

 

 
 

Figure 2. The magnetic field dependence of line-widths,  

( )B  of ZnO for T=50, 70, 90, 120, 210 K   

 

 

Results 

 

We analyze absorption power and line-widths of ZnO, 

under a right circularly polarized external field. It is 

well known that the piezoelectric potential scattering 

is a dominant scattering process in ZnO. The 

piezoelectric potential is 

)/1)(2()( 0

222 qVeKqV s = . 

 

 
 

Figure 3. The relatively frequency ( )  dependence of  

the absorption power ( )P ( )R   of  ZnO for  =220,   

394, 513, 550, 720 at T=50 K. 

 

In Fig. 2, we plotted the magnetic field dependence 

of the line-widths, (B)   of  ZnO, at T= 50, 70, 90, 

120 and 210 K. The results indicate that increase as 

the magnetic field. This result implies that the 

scattering effect of phonons enlarges with the 

increasing temperatures and the increasing magnetic 

field in ZnO. Even though we cannot separate 

experimentally the scattering effects of the phonon 

emission and absorption transition, the analysis of the 

relation between the total scattering effect and the 

scattering effect of two processes represents the 

thermal characteristic of the scattering effect of the 

system.22, 23 Also, comparisons of the magnetic field 

dependence of line-widths, 
totalB)(  ,

emB)(   and  

abB)(  of  ZnO, at T=50K is shown. The 

line-widths,
totalB)(  , 

emB)(   and  
abB)(  increase 

as the magnetic field while 
abB)(  decreases as 

magnetic field increase at the region 18<B<26 Tesla. 

The contributions of two processes can be appeared 
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differently in various cases in various systems.  

 

 
 

Figure 4. The relatively frequency ( )  dependence of  

the absorption power (L)P ( )  of  ZnO for  =220,   

394, 513, 550, 720 at T=50 K. 

 

Fig. 3, represents the magnetic field dependence of 

the absorption power )( BP  of the line-widths of 

ZnO for the external field wavelength  =393  m at 

several temperatures, T=50, 70, 90, 120 and 210 K. 

In order to compare the line of line-widths in the 

same graph, we plot the value of the rational 

absorption power, )()( BPBPnr =  here ))(/)10(( BPT S . 

The )(BPS
 is the maximum value at T=30.  As 

seen in Fig. 3, )( BP  increases as the temperature 

increases. Also, the line-widths increases with the 

increasing temperatures. The results explain the 

resonant phenomena in the electron-piezoelectric 

potential interacting system because the collision 

effect of phonons due to the thermal lattice vibration 

is expected to become larger with increasing 

temperatures. 

Fig.4, we can read the magnetic-field dependence of 

the maximum absorption power in upper figure. The 

bellow figure of Fig. 4 shows the relative frequency 

dependence of the absorption power, )(P   of ZnO, 

with  =220, 394, 513, 550 and 550  m at T=50 K. 

The analysis of the relative frequency dependence of 

the absorption power represents the magnetic field 

dependency property of the absorption power given 

for an external field wavelength and the conditions of 

the system. The results of this work will help to 

analyze experimental the scattering mechanisms in 

the electron- piezoelectric potential interacting 

materials.  

 

 

Concluding Remarks 

 

As a brief summary, the quantum transition of the 

EDPT is a useful method to investigate the 

linear-nonlinear effect of the induced dynamic value 

due to polarizability on the transition mechanism in 

the WLT system. We derived the dynamic value 

formula and the MFF in electron phonon coupling 

systems and electron impurity coupling systems of 

two transition types, the intra-band transitions and 

inter-band transitions. We obtained results of the 

WLT system that can be applied directly to numerical 

analyses. The easy analysis of each quantum 

transition processes are the merits of our theory. In 

this work, we analyzed the line-shape and the 

line-width of the electron-piezoelectric phonon 

interacting system. We selected a system in the 

confinement of electrons by square-well confinement 

potential. Because the analysis results shown in Fig. 

2-4 are reasonable for explaining the quantum 

transition phenomena, our results indicate that the 

quantum transport theory of EDPT is a useful method 

for explaining the resonant phenomena on the basis 

of quantum transition and the scattering effect in a 

microscopic view. The results of this work will help 

to analyze experimental the scattering mechanisms. 
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