Quantum Chemical Calculation of NO Decomposition over Cu-Y Zeolite

Cu-Y 제올라이트상의 NO분해반응에 대한 양자화학적 해석

  • Kim, Myung-Chul (College of General Education, Kyungpook Sanup University)
  • 김명철 (경북산업대학교 교양학부)
  • Received : 1995.11.20
  • Accepted : 1996.02.27
  • Published : 1996.04.10

Abstract

Quantum chemical calculations are used to characterize the decomposition of nitrogenmonoxide over $Cu^{n+}$-Y zeolite. The method of theoretical calculations, such as CNDO/2, have been applied to cluster models representing cation sites in zeolite to obtain total energies, LUMO energies, and Wiberg bond orders. The calculated total energies and bond orders of cluster models showed the reaction mechanism of NO decomposition over $Cu^{n+}$ site in zeolite framework. The suggested cluster models of varying Si/Al ratios studied with exchange cations in the $Cu^+$ and in the $Cu^{2+}$ states. And the calculated LUMO energies can predict L acidifies of cluster models. The results from these experiments showed the possibility of the mechanism of NO decomposition, progressing adsorption of NO, conversion to $N_2$ and $O_2$, desorption of $N_2$ and $O_2$ in sequence. The L acidity of $Cu^{2+}$ ion in cation site is more strong than $Cu^+$.

$Cu^{n+}$ 교환된 Y형 제올라이트 상에서 진행되는 NO분해반응의 특성을 양자화학적 계산을 통해 해석하였다. 제올라이트내 양이온 자리를 나타내는 Cluster모델들에 대해 CNDO/2와 같은 이론적 계산을 수행하여 전체에너지, LUMO에너지 및 Wiberg결합차수값들을 얻었다. 각 모델들의 전체에너지와 결합차수값들을 통해 제올라이트 골격내 $Cu^{n+}$ 양이온 자리에서의 NO분해반응에 대한 반응기구를 고찰하였다. 제안된 분자모델들은 각기 다른 Si/Al비와 $Cu^+$$Cu^{2+}$ 교환된 양이온의 경우로 구분하여 고찰하였다. LUMO에너지의 계산을 통해 모델분자들의 L산성도를 해석하였다. NO분해반응의 메카니즘은 NO의 흡착, $N_2$$O_2$로의 분해, $N_2$$O_2$의 탈착의 단계가 연속적으로 진행될 가능성이 있었다. 양이온 자리에서 $Cu^{2+}$$Cu^+$ 보다 더 강한 L산성을 나타내었다.

Keywords

References

  1. Zeolite Chemistry and Catalysis J. A. Rabo
  2. New Development in Zeolite Science and Technology Y. Murakami
  3. New Development in Zeolite Science and Technology Y. Murakami
  4. J. Catal. v.104 J. Arribas
  5. J. Catal. v.104 L. M. Aparicio
  6. Hydrocarbons from Methanol C. D. Chang
  7. New Development in Zeolite Science and Technology Y. Murakami
  8. J. Phys. Chem. v.97 W. Grunert;U. Sauerlandt;R. Schlogl;H. G. Karge
  9. J. Phys. Chem. v.97 W. P. J. H. Jacobs;J. W. de Hann;L. J. M. van de ven;R.A. van Santen
  10. J. Phys. Chem. v.98 B. Gil;E. Broclawik;J. Datka;J. Klinowski
  11. Catal. Lette. v.19 J. Valyon;W. K. Hall
  12. Appl. Catal. B. Envir. v.5 G. D. Lei;B. J. Adelman;J. Sarkany;W. M. H. Sachtler
  13. J. of Catal. v.143 J. Valyon;W. K. Hall
  14. J. Phys. Chem. v.97 J. Valyon;W. K. Hall
  15. J. Phys. Chem. v.97 J. Valyon;W. K. Hall
  16. J. Phys. Chem. v.98 Y. Itho;S. Nishiyama;S. Tsuruya;M. Masai
  17. J. of Catal. v.136 E. Giamello;D. Murphy;G. Magnacca;C. Morterra;Y. Shioya;T. Nomura;M. Anpo
  18. J. of Catal. v.152 A. V. Kucherov;J. L. Gerlock;H. W. Jen;M. Shelef
  19. Zeolites v.11 I. Jirka;V. Bosacek
  20. J. Phys. Chem. v.97 M. Crocker;R. H. M. Herold;M. H. W. Sonnemans;C. A. Emeis;A. E. Wilson;J. N. Moolen
  21. J. Phys. Chem. v.98 J. Dedecek;B. Wichterlova
  22. J. Phys. Chem. v.98 M. Anpo;M. Matsuoka;Y. Shioya;H. Yamashita;E. Giamello;C. Morterra;M. Che;H. H. Patterson;S. Webber;S. Ouellette;M. A. Fox
  23. J. Phys. Chem. v.98 W. Grunert;N. W. Hayes;R. W. Joyner;E. S. Shpiro;M. R. H. Siddiqui;G. N. Baeva
  24. J. of Catal. v.129 Y. Li;W. K. Hall
  25. Catal. Lette. v.15 W. K. Hall;J. Valyon
  26. J. Phys. Chem. v.95 E. Kassab;K. Seiti;M. Allavena
  27. J. Phys. Chem. v.97 S. Bates;Dwyer
  28. J. Am. Chem. Soc. v.107 M. J. S. Dewar;E. G. Zoebisch;E. F. Healy;J. J. P. Stewart
  29. Quantnm Chemistry(3rd ed.) I. N. Levine
  30. J. Phys. Chem. v.86 S. Beran
  31. J. Phys. Chem. v.74 D. H. Olson