• 제목/요약/키워드: quantitative expression analysis

검색결과 694건 처리시간 0.025초

Genome-Wide Analysis Identifies NURR1-Controlled Network of New Synapse Formation and Cell Cycle Arrest in Human Neural Stem Cells

  • Kim, Soo Min;Cho, Soo Young;Kim, Min Woong;Roh, Seung Ryul;Shin, Hee Sun;Suh, Young Ho;Geum, Dongho;Lee, Myung Ae
    • Molecules and Cells
    • /
    • 제43권6호
    • /
    • pp.551-571
    • /
    • 2020
  • Nuclear receptor-related 1 (Nurr1) protein has been identified as an obligatory transcription factor in midbrain dopaminergic neurogenesis, but the global set of human NURR1 target genes remains unexplored. Here, we identified direct gene targets of NURR1 by analyzing genome-wide differential expression of NURR1 together with NURR1 consensus sites in three human neural stem cell (hNSC) lines. Microarray data were validated by quantitative PCR in hNSCs and mouse embryonic brains and through comparison to published human data, including genome-wide association study hits and the BioGPS gene expression atlas. Our analysis identified ~40 NURR1 direct target genes, many of them involved in essential protein modules such as synapse formation, neuronal cell migration during brain development, and cell cycle progression and DNA replication. Specifically, expression of genes related to synapse formation and neuronal cell migration correlated tightly with NURR1 expression, whereas cell cycle progression correlated negatively with it, precisely recapitulating midbrain dopaminergic development. Overall, this systematic examination of NURR1-controlled regulatory networks provides important insights into this protein's biological functions in dopamine-based neurogenesis.

Isolation and expression analysis of stimulator of interferon gene from olive flounder, Paralichthys olivaceus

  • Ma, Jeong-In;Kang, Sunhye;Jeong, Hyung-Bok;Lee, Jehee
    • Fisheries and Aquatic Sciences
    • /
    • 제21권3호
    • /
    • pp.5.1-5.8
    • /
    • 2018
  • Stimulator of interferon gene (STING) is induced by various inflammatory agents, such as lipopolysaccharide and microbial pathogens, including virus and bacteria. In this study, we obtained a full-length cDNA of a STING homolog from olive flounder using rapid amplification of cDNA ends PCR technique. The full-length cDNA of Paralichthys olivaceus STING (PoSTING) was 1442 bp in length and contained a 1209-bp open reading frame that translated into 402 amino acids. The theoretical molecular mass of the predicted protein sequence was 45.09 kDa. In the PoSTING protein, three transmembrane domains and the STING superfamily domain were identified as characteristic features. Quantitative real-time PCR revealed that PoSTING expressed in all the tissues analyzed, but showed the highest level in the spleen. Temporal expression analysis examined the significantly upregulated expression of PoSTING mRNA after viral hemorrhagic septicemia virus (VHSV) stimulation. In contrast, no significant changes in the PoSTING expression were detected in Edwardsiella tarda-challenged group compared to the un-injected control. The expression of P. olivaceus type I interferon (PoIFN-I) was also highly upregulated upon VHSV challenge. These results suggest that STING might be involved in the essential immune defense against viral infection together with the activation of IFN-I in olive flounder.

Expression of Sara2 Human Gene in Erythroid Progenitors

  • Jardim, Denis Leonardo Fontes;Cunha, Anderson Ferreira Da;Duarte, Adriana Da Silva Santos;Santos, Camila Oresco Dos;Saad, Sara Terezinha Olalla;Costa, Fernando Ferreira
    • BMB Reports
    • /
    • 제38권3호
    • /
    • pp.328-333
    • /
    • 2005
  • A human homologue of Sar1, named Sara2, was shown to be preferentially expressed during erythropoiesis in a culture stimulated by EPO. Previous studies, in yeast, have shown that secretion-associated and Ras-related protein (Sar1p) plays an essential role in protein transport from the endoplasmic reticulum to the Golgi apparatus. Here, we report the molecular analysis of Sara2 in erythroid cell culture. A 1250 bp long cDNA, encoding a 198 amino-acid protein very similar to Sar1 proteins from other organisms, was obtained. Furthermore, we also report a functional study of Sara2 with Real-time quantitative PCR analysis, demonstrating that expression of Sara2 mRNA increases during the initial stages of erythroid differentiation with EPO and that a two-fold increase in expression occurs following the addition of hydroxyurea (HU). In K562 cells, Sara2 mRNA was observed to have a constant expression and the addition of HU also up-regulated the expression in these cells. Our results suggest that Sara2 is an important gene in processes involving proliferation and differentiation and could be valuable for understanding the vesicular transport system during erythropoiesis.

Inhibition of Chitinase-3-like-1 by K284-6111 Reduces Atopic Skin Inflammation via Repressing Lactoferrin

  • Seong Hee Jeon;Yong Sun Lee;In Jun Yeo;Hee Pom Lee;Jaesuk Yoon;Dong Ju Son;Sang-Bae Han;Jin Tae Hong
    • IMMUNE NETWORK
    • /
    • 제21권3호
    • /
    • pp.22.1-22.17
    • /
    • 2021
  • Chitinase-3-like-1 (CHI3L1) is known to induce inflammation in the progression of allergic diseases. Previous our studies revealed that 2-({3-[2-(1-cyclohexen-1-yl)ethyl]-6,7-dimethoxy-4-oxo-3,4-dihydro-2-quinazolinyl}sulfanyl)-N-(4-ethylphenyl)butanamide (K284-6111; K284), the CHI3L1 inhibiting compound, has the anti-inflammatory effect on neuroinflammation. In this study, we investigated that K284 treatment could inhibit the development of atopic dermatitis (AD). To identify the effect of K284, we used phthalic anhydride (5% PA)-induced AD animal model and in vitro reconstructed human skin model. We analyzed the expression of AD-related cytokine mediators and NF-κB signaling by Western blotting, ELISA and quantitative real-time PCR. Histological analysis showed that K284 treatment suppressed PA-induced epidermal thickening and infiltration of mast cells. K284 treatment also reduced PA-induced release of inflammatory cytokines. In addition, K284 treatment inhibited the expression of NF-κB activity in PA-treated skin tissues and TNF-α and IFN-γ-treated HaCaT cells. Protein-association network analysis indicated that CHI3L1 is associated with lactoferrin (LTF). LTF was elevated in PA-treated skin tissues and TNF-α and IFN-γ-induced HaCaT cells. However, this expression was reduced by K284 treatment. Knockdown of LTF decreased the expression of inflammatory cytokines in TNF-α and IFN-γ-induced HaCaT cells. Moreover, anti-LTF antibody treatment alleviated AD development in PA-induced AD model. Our data demonstrate that CHI3L1 targeting K284 reduces AD-like skin inflammation and K284 could be a promising therapeutic agent for AD by inhibition of LTF expression.

Saccharomyces cerevisiae에서 효모 Superkiller 유전자(SK13)의 발현 (Expression of a Yeast Superkiller Gene(SK13) in Saccharomyces cerevisiae)

  • 이상기
    • 미생물학회지
    • /
    • 제28권2호
    • /
    • pp.114-119
    • /
    • 1990
  • 효모 Saccharomyces cerevisiae의 염색체상에 존재하는 superkiller 유전자인 SKIB 유전자를 cloning 시켜 ski 변이 주내에서 발현시켰다. 이 유전자의 C-말단부위에 E. coli의 tacZ 구조 유전자를 융합시켜 효모와 E. coli의 shuttle vector인 pSR605를 제조하고 이를 효모에 형질전환 시킨 후 나타나는 $\beta$-galactosidase의 융합단백질을 확인할 수 있었다.

  • PDF

Directed Evolution of a β-Glucosidase for Improved Functions as a Reporter in Protein Expression

  • Lim, Ho-Dong;Han, So-Young;Park, Gi-Hye;Cheong, Dae-Eun;Kim, Geun-Joong
    • 한국미생물·생명공학회지
    • /
    • 제50권2호
    • /
    • pp.240-244
    • /
    • 2022
  • Precisely reliable and quantitative reporters can provide phenotypes that are consistent with research goals in protein expression. Here, we developed an improved reporter mATglu III 5 by directed evolution using a versatile β-glucosidase ATglu derived from Agrobacterium tumefaciens. When expressed in hosts, a vector containing this mutant distinctly showed a colored or fluorescent phenotype, according to the supplemented substrate, without any inducer. Analysis of mATglu III 5 showed it to be fully functional in fusion state with oligomeric proteins, especially under non-induction conditions, thereby offering an alternative to conventional reporters.

Gene expression changes in silkworm embryogenesis for prediction of hatching time

  • Jong Woo Park;Chang Hoon Lee;Chan Young Jeong;Hyeok Gyu Kwon;Seul Ki Park;Ji Hae Lee;Sang Kuk Kang;Seong-Wan Kim;Seong-Ryul Kim;Hyun-Bok Kim;Kee Young Kim
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제46권1호
    • /
    • pp.16-23
    • /
    • 2023
  • The silkworm's dormancy and embryonic development are accomplished through the interaction of various genes. Analysis of the expression of several interacting genes can predict the embryonic stage of silkworms. In this study, we analyzed the changes in the expression level of genes at each stage during the embryonic development of dormant silkworm eggs and selected genes that can predict the hatching time. Jam123 and Jam124 silkworms were collected after egg laying, and the silkworm eggs were preserved using a double refrigeration method and expression analysis was performed for 23 genes during embryogenesis. There were 5 genes showing significant changes during embryogenesis: UDP-glucuronosyltransferases (BmUGTs), heat shock protein hsp20.8 (BmHsp20.8), Cytochromes b5-like proteins (BmCytb5), Krüppel homolog 1 (BmKr-h1), and cuticular protein RR-1 motif 41 (BmCpr41). As a result of quantitative comparison of the expression levels of these 5 genes through real-time PCR, the BmUGTs gene showed a difference between Jam123 and Jam124, making it difficult to see it as an indicator for predicting hatching time. However, the BmHsp20.8 gene had a common expression decreased at the imminent hatching stage. In addition, it was confirmed that the expression level of the BmCytb5 gene decreased to the lowest level at the time of imminent hatching, and the expression of the BmKr-h gene was made only at the time of imminent hatching. The expression of the last BmCpr41 gene can be confirmed only at the time of imminent hatching, and it was confirmed that it shows a rapid increase right before hatching. Taken together, these results suggest that expression analysis of BmHsp20.8, BmCytb5, BmKr-h1, and BmCpr41 genes can determine the stage of embryogenesis, predict hatching time, which facilitate better management of silkworm eggs.

Four Members of Heat Shock Protein 70 Family in Korean Rose Bitterling (Rhodeus uyekii)

  • Kim, Jung Hyun;Dong, Chun Mae;Kim, Julan;An, Cheul Min;Baek, Hae Ja;Kong, Hee Jeong
    • 한국발생생물학회지:발생과생식
    • /
    • 제19권3호
    • /
    • pp.135-144
    • /
    • 2015
  • Heat shock protein (HSP) 70, the highly conserved stress protein families, plays important roles in protecting cells against heat and other stresses in most animal species. In the present study, we identified and characterized four Hsp70 (RuHSP4, RuHSC70, RuHSP12A, RuGRP78) family proteins based on the expressed sequence tag (EST) analysis of the Korean rose bitterling R. uyekii cDNA library. The deduced RuHSP70 family has high amino acid identities of 72-99% with those of other species. Phylogenetic analysis revealed that RuHsp70 family clustered with fish groups (HSP4, HSC70, HSP12A, GRP78) proteins. Quantitative RT-PCR analysis showed the specific expression patterns of RuHsp70 family members in the early developmental stages and several tissues in Korean rose bitterling. The expression of 4 groups of Hsp70 family was detected in all tested tissue. Particularly, Hsp70 family of Korean rose bitterling is highly expressed in hepatopancreas and sexual gonad (testis and ovary). The expression of Hsp70 family was differentially regulated in accordance with early development stage of Rhodeus uyekii.

Magnesium vs. machined surfaced titanium - osteoblast and osteoclast differentiation

  • Kwon, Yong-Dae;Lee, Deok-Won;Hong, Sung-Ok
    • The Journal of Advanced Prosthodontics
    • /
    • 제6권3호
    • /
    • pp.157-164
    • /
    • 2014
  • PURPOSE. This study focused on in vitro cell differentiation and surface characteristics in a magnesium coated titanium surface implanted on using a plasma ion source. MATERIALS AND METHODS. 40 commercially made pure titanium discs were prepared to produce Ti oxide machined surface (M) and Mg-incorporated Ti oxide machined surface (MM). Surface properties were analyzed using a scanning electron microscopy (SEM). On each surface, alkaline phosphatase (ALP) activity, alizarin red S staining for mineralization of MC3T3-E1 cells, and quantitative analysis of osteoblastic gene expression, were evaluated. Actin ring formation assay and gene expression analysis of TRAP and GAPDH performing RT-PCR were performed to characterize osteoclast differentiation on mouse bone marrow-derived macrophages (BMMs). RESULTS. MM showed similar surface morphology and surface roughness with M, but was slightly smoother after ion implantation at the micron scale. M was more hydrophobic than MM. No significant difference between surfaces on ALP activity at 7 and 14 days were observed. Real-time PCR analyses showed similar levels of mRNA expression of the osteoblast phenotype genes; osteopontin (OPN), osteocalcin (OCN), bone sialoprotein (BSP), and collagen 1 (Col 1) in cell grown on MM at 7, 14 and 21 days. Alizarin red S staining at 21 days showed no significant difference. BMMs differentiation increased in M and MM. Actin ring formation assay and gene expression analysis of TRAP showed osteoclast differentiation to be more active on MM. CONCLUSION. Both M and MM have a good effect on osteoblastic cell differentiation, but MM may speed the bone remodeling process by activating on osteoclast differentiation.

Ginseng seed oil ameliorates hepatic lipid accumulation in vitro and in vivo

  • Kim, Go Woon;Jo, Hee Kyung;Chung, Sung Hyun
    • Journal of Ginseng Research
    • /
    • 제42권4호
    • /
    • pp.419-428
    • /
    • 2018
  • Background: Despite the large number of studies on ginseng, pharmacological activities of ginseng seed oil (GSO) have not been established. GSO is rich in unsaturated fatty acids, mostly oleic and linoleic acids. Unsaturated fatty acids are known to exert a therapeutic effect in nonalcoholic fatty liver disease (NAFLD). In this study, we investigated the protective effect and underlying mechanisms of GSO against NAFLD using in vitro and in vivo models. Methods: In vitro lipid accumulation was induced by free fatty acid mixture in HepG2 cells and by 3 wk of high fat diet (HFD)-feeding in Sprague-Dawley rats prior to hepatocyte isolation. The effects of GSO against diet-induced hepatic steatosis were further examined in C57BL/6J mice fed a HFD for 12 wk. Results: Oil Red O staining and intracellular triglyceride levels showed marked accumulation of lipid droplets in both HepG2 cells and rat hepatocytes, and these were attenuated by GSO treatment. In HFD-fed mice, GSO improved HFD-induced dyslipidemia and hepatic insulin resistance. Increased hepatic lipid contents were observed in HFD-fed mice and it was lowered in GSO (500 mg/kg)-treated mice by 26.4% which was evident in histological analysis. Pathway analysis of hepatic global gene expression indicated that GSO increased the expression of genes associated with ${\beta}$-oxidation (Ppara, Ppargc1a, Sirt1, and Cpt1a) and decreased the expression of lipogenic genes (Srebf1 and Mlxipl), and these were confirmed with reverse transcription and quantitative polymerase-chain reaction. Conclusion: These findings suggest that GSO has a beneficial effect on NAFLD through the suppression of lipogenesis and stimulation of fatty acid degradation pathway.