DOI QR코드

DOI QR Code

Inhibition of Chitinase-3-like-1 by K284-6111 Reduces Atopic Skin Inflammation via Repressing Lactoferrin

  • Seong Hee Jeon (College of Pharmacy and Medical Research Center, Chungbuk National University) ;
  • Yong Sun Lee (College of Pharmacy and Medical Research Center, Chungbuk National University) ;
  • In Jun Yeo (College of Pharmacy and Medical Research Center, Chungbuk National University) ;
  • Hee Pom Lee (College of Pharmacy and Medical Research Center, Chungbuk National University) ;
  • Jaesuk Yoon (College of Pharmacy and Medical Research Center, Chungbuk National University) ;
  • Dong Ju Son (College of Pharmacy and Medical Research Center, Chungbuk National University) ;
  • Sang-Bae Han (College of Pharmacy and Medical Research Center, Chungbuk National University) ;
  • Jin Tae Hong (College of Pharmacy and Medical Research Center, Chungbuk National University)
  • Received : 2021.04.21
  • Accepted : 2021.06.24
  • Published : 2021.06.30

Abstract

Chitinase-3-like-1 (CHI3L1) is known to induce inflammation in the progression of allergic diseases. Previous our studies revealed that 2-({3-[2-(1-cyclohexen-1-yl)ethyl]-6,7-dimethoxy-4-oxo-3,4-dihydro-2-quinazolinyl}sulfanyl)-N-(4-ethylphenyl)butanamide (K284-6111; K284), the CHI3L1 inhibiting compound, has the anti-inflammatory effect on neuroinflammation. In this study, we investigated that K284 treatment could inhibit the development of atopic dermatitis (AD). To identify the effect of K284, we used phthalic anhydride (5% PA)-induced AD animal model and in vitro reconstructed human skin model. We analyzed the expression of AD-related cytokine mediators and NF-κB signaling by Western blotting, ELISA and quantitative real-time PCR. Histological analysis showed that K284 treatment suppressed PA-induced epidermal thickening and infiltration of mast cells. K284 treatment also reduced PA-induced release of inflammatory cytokines. In addition, K284 treatment inhibited the expression of NF-κB activity in PA-treated skin tissues and TNF-α and IFN-γ-treated HaCaT cells. Protein-association network analysis indicated that CHI3L1 is associated with lactoferrin (LTF). LTF was elevated in PA-treated skin tissues and TNF-α and IFN-γ-induced HaCaT cells. However, this expression was reduced by K284 treatment. Knockdown of LTF decreased the expression of inflammatory cytokines in TNF-α and IFN-γ-induced HaCaT cells. Moreover, anti-LTF antibody treatment alleviated AD development in PA-induced AD model. Our data demonstrate that CHI3L1 targeting K284 reduces AD-like skin inflammation and K284 could be a promising therapeutic agent for AD by inhibition of LTF expression.

Keywords

Acknowledgement

This work is financially supported by the National Research Foundation of Korea [NRF] Grant funded by the Korea government (MSIP) (No. MRC, 2017R1A5A2015541).

References

  1. Thomsen SF. Atopic dermatitis: natural history, diagnosis, and treatment. ISRN Allergy 2014;2014:354250.
  2. Leung DY, Boguniewicz M, Howell MD, Nomura I, Hamid QA. New insights into atopic dermatitis. J Clin Invest 2004;113:651-657. https://doi.org/10.1172/JCI21060
  3. Stone SP, Gleich GJ, Muller SA. Atopic dermatitis and IgE. Relationship between changes in IgE levels and severity of disease. Arch Dermatol 1976;112:1254-1255. https://doi.org/10.1001/archderm.1976.01630330024005
  4. Kwak MH, Kim JE, Hwang IS, Lee YJ, An BS, Hong JT, Lee SH, Hwang DY. Quantitative evaluation of therapeutic effect of Liriope platyphylla on phthalic anhydride-induced atopic dermatitis in IL-4/Luc/CNS-1 Tg mice. J Ethnopharmacol 2013;148:880-889. https://doi.org/10.1016/j.jep.2013.05.036
  5. Sung JE, Lee HA, Kim JE, Go J, Seo EJ, Yun WB, Kim DS, Son HJ, Lee CY, Lee HS, et al. Therapeutic effect of ethyl acetate extract from Asparagus cochinchinensis on phthalic anhydride-induced skin inflammation. Lab Anim Res 2016;32:34-45. https://doi.org/10.5625/lar.2016.32.1.34
  6. Zhang YY, Wang AX, Xu L, Shen N, Zhu J, Tu CX. Characteristics of peripheral blood CD4+CD25+ regulatory T cells and related cytokines in severe atopic dermatitis. Eur J Dermatol 2016;26:240-246. https://doi.org/10.1684/ejd.2015.2709
  7. Park HJ, Jang YJ, Yim JH, Lee HK, Pyo S. Ramalin isolated from ramalina terebrata attenuates atopic dermatitis-like skin lesions in balb/c mice and cutaneous immune responses in keratinocytes and mast cells. Phytother Res 2016;30:1978-1987. https://doi.org/10.1002/ptr.5703
  8. Brandt EB, Sivaprasad U. Th2 cytokines and atopic dermatitis. J Clin Cell Immunol 2011;2:110.
  9. Coffman FD. Chitinase 3-Like-1 (CHI3L1): a putative disease marker at the interface of proteomics and glycomics. Crit Rev Clin Lab Sci 2008;45:531-562. https://doi.org/10.1080/10408360802334743
  10. Blakely K, Gooderham M, Papp K. Dupilumab, a monoclonal antibody for atopic dermatitis: A review of current literature. Skin Therapy Lett 2016;21:1-5.
  11. Deleanu D, Nedelea I. Biological therapies for atopic dermatitis: an update. Exp Ther Med 2019;17:1061-1067.
  12. Jeziorkowska R, Sysa-Jedrzejowska A, Samochocki Z. Topical steroid therapy in atopic dermatitis in theory and practice. Postepy Dermatol Alergol 2015;32:162-166. https://doi.org/10.5114/pdia.2014.40962
  13. Jarnagin K, Chanda S, Coronado D, Ciaravino V, Zane LT, Guttman-Yassky E, Lebwohl MG. Crisaborole topical ointment, 2%: a nonsteroidal, topical, anti-inflammatory phosphodiesterase 4 inhibitor in clinical development for the treatment of atopic dermatitis. J Drugs Dermatol 2016;15:390-396.
  14. Kapp A, Papp K, Bingham A, Folster-Holst R, Ortonne JP, Potter PC, Gulliver W, Paul C, Molloy S, Barbier N, et al. Long-term management of atopic dermatitis in infants with topical pimecrolimus, a nonsteroid anti-inflammatory drug. J Allergy Clin Immunol 2002;110:277-284. https://doi.org/10.1067/mai.2002.126500
  15. Meng Y, Liu Z, Zhai C, Di T, Zhang L, Zhang L, Xie X, Lin Y, Wang N, Zhao J, et al. Paeonol inhibits the development of 1-chloro-2,4-dinitrobenzene-induced atopic dermatitis via mast and T cells in BALB/c mice. Mol Med Rep 2019;19:3217-3229. https://doi.org/10.3892/mmr.2019.9985
  16. Kzhyshkowska J, Yin S, Liu T, Riabov V, Mitrofanova I. Role of chitinase-like proteins in cancer. Biol Chem 2016;397:231-247. https://doi.org/10.1515/hsz-2015-0269
  17. Lee CG, Da Silva CA, Dela Cruz CS, Ahangari F, Ma B, Kang MJ, He CH, Takyar S, Elias JA. Role of chitin and chitinase/chitinase-like proteins in inflammation, tissue remodeling, and injury. Annu Rev Physiol 2011;73:479-501. https://doi.org/10.1146/annurev-physiol-012110-142250
  18. Yeo IJ, Lee CK, Han SB, Yun J, Hong JT. Roles of chitinase 3-like 1 in the development of cancer, neurodegenerative diseases, and inflammatory diseases. Pharmacol Ther 2019;203:107394.
  19. Schimpl M, Rush CL, Betou M, Eggleston IM, Recklies AD, van Aalten DM. Human YKL-39 is a pseudo-chitinase with retained chitooligosaccharide-binding properties. Biochem J 2012;446:149-157. https://doi.org/10.1042/BJ20120377
  20. Sohn MH, Lee JH, Kim KW, Kim SW, Lee SH, Kim KE, Kim KH, Lee CG, Elias JA, Lee MG. Genetic variation in the promoter region of chitinase 3-like 1 is associated with atopy. Am J Respir Crit Care Med 2009;179:449-456. https://doi.org/10.1164/rccm.200809-1422OC
  21. Rathcke CN, Holmkvist J, Husmoen LL, Hansen T, Pedersen O, Vestergaard H, Linneberg A. Association of polymorphisms of the CHI3L1 gene with asthma and atopy: a populations-based study of 6514 Danish adults. PLoS One 2009;4:e6106.
  22. Kwak EJ, Hong JY, Kim MN, Kim SY, Kim SH, Park CO, Kim KW, Lee CG, Elias JA, Jee HM, et al. Chitinase 3-like 1 drives allergic skin inflammation via Th2 immunity and M2 macrophage activation. Clin Exp Allergy 2019;49:1464-1474. https://doi.org/10.1111/cea.13478
  23. Salomon J, Matusiak L, Nowicka-Suszko D, Szepietowski JC. Chitinase-3-like protein 1 (ykl-40) reflects the severity of symptoms in atopic dermatitis. J Immunol Res 2017;2017:5746031.
  24. Suzuki H, Boki H, Kamijo H, Nakajima R, Oka T, Shishido-Takahashi N, Suga H, Sugaya M, Sato S, Miyagaki T. Ykl-40 promotes proliferation of cutaneous t-cell lymphoma tumor cells through extracellular signal-regulated kinase pathways. J Invest Dermatol 2019;140:860-868.e3. https://doi.org/10.1016/j.jid.2019.09.007
  25. Semak I, Budzevich A, Maliushkova E, Kuzniatsova V, Popkov N, Zalutsky I, Ivashkevich O. Development of dairy herd of transgenic goats as biofactory for large-scale production of biologically active recombinant human lactoferrin. Transgenic Res 2019;28:465-478. https://doi.org/10.1007/s11248-019-00165-y
  26. Leung DY, Soter NA. Cellular and immunologic mechanisms in atopic dermatitis. J Am Acad Dermatol 2001;44:S1-S12. https://doi.org/10.1067/mjd.2001.109815
  27. Volck B, Price PA, Johansen JS, Sorensen O, Benfield TL, Nielsen HJ, Calafat J, Borregaard N. YKL-40, a mammalian member of the chitinase family, is a matrix protein of specific granules in human neutrophils. Proc Assoc Am Physicians 1998;110:351-360.
  28. Guo C, Yang ZH, Zhang S, Chai R, Xue H, Zhang YH, Li JY, Wang ZY. Intranasal lactoferrin enhances α-secretase-dependent amyloid precursor protein processing via the ERK1/2-CREB and HIF-1α pathways in an Alzheimer's disease mouse model. Neuropsychopharmacology 2017;42:2504-2515. https://doi.org/10.1038/npp.2017.8
  29. Tong PL, West NP, Cox AJ, Gebski VJ, Watts AM, Dodds A, de St Groth BF, Cripps AW, Shumack S. Oral supplementation with bovine whey-derived Ig-rich fraction and lactoferrin improves SCORAD and DLQI in atopic dermatitis. J Dermatol Sci 2017;85:143-146. https://doi.org/10.1016/j.jdermsci.2016.11.009
  30. Choi JY, Yeo IJ, Kim KC, Choi WR, Jung JK, Han SB, Hong JT. K284-6111 prevents the amyloid beta-induced neuroinflammation and impairment of recognition memory through inhibition of NF-κB-mediated CHI3L1 expression. J Neuroinflammation 2018;15:224-224. https://doi.org/10.1186/s12974-018-1269-3
  31. Lee YS, Han SB, Ham HJ, Park JH, Lee JS, Hwang DY, Jung YS, Hong JT. Interleukin-32γ suppressed atopic dermatitis through inhibition of miR-205 expression via inactivation of nuclear factor-kappa B. J Allergy Clin Immunol 2020;146:156-168.  https://doi.org/10.1016/j.jaci.2019.12.905
  32. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 2019;47:D607-D613. https://doi.org/10.1093/nar/gky1131
  33. Cohen DE, Heidary N. Treatment of irritant and allergic contact dermatitis. Dermatol Ther 2004;17:334-340. https://doi.org/10.1111/j.1396-0296.2004.04031.x
  34. Elias PM, Schmuth M. Abnormal skin barrier in the etiopathogenesis of atopic dermatitis. Curr Opin Allergy Clin Immunol 2009;9:437-446. https://doi.org/10.1097/ACI.0b013e32832e7d36
  35. Kwak EJ, Hong JY, Kim MN, Kim SY, Kim SH, Park CO, Kim KW, Lee CG, Elias JA, Jee HM, et al. Chitinase 3-like 1 drives allergic skin inflammation via Th2 immunity and M2 macrophage activation. Clin Exp Allergy 2019;49:1464-1474. https://doi.org/10.1111/cea.13478
  36. Farid AS, El Shemy MA, Nafie E, Hegazy AM, Abdelhiee EY. Anti-inflammatory, anti-oxidant and hepatoprotective effects of lactoferrin in rats. Drug Chem Toxicol 2021;44:286-293. https://doi.org/10.1080/01480545.2019.1585868
  37. Nordenbaek C, Johansen JS, Junker P, Borregaard N, Sorensen O, Price PA. YKL-40, a matrix protein of specific granules in neutrophils, is elevated in serum of patients with community-acquired pneumonia requiring hospitalization. J Infect Dis 1999;180:1722-1726. https://doi.org/10.1086/315050
  38. Franzago M, Di Ruscio D, Malavolta I, Muccini H. Collaborative model-driven software engineering: a classification framework and a research map. IEEE Trans Softw Eng 2018;44:1146-1175. https://doi.org/10.1109/TSE.2017.2755039
  39. Antonson P, Nalvarte I, Varshney M, Xu L, Windahl SH, Humire P, Ohlsson C, Gustafsson JA, Dahlman-Wright K. Identification of proteins highly expressed in uterine fluid from mice with hydrometra. Biochem Biophys Res Commun 2015;466:650-655. https://doi.org/10.1016/j.bbrc.2015.09.099
  40. Negaoui H, El Mecherfi KE, Tadjer SA, Grar H, Kheroua O, Saidi D. Bovine lactoferrin allergenicity as studied in murine model of allergy. Food Agric Immunol 2016;27:711-723. https://doi.org/10.1080/09540105.2016.1160365
  41. Nagaoka K, Ito T, Ogino K, Eguchi E, Fujikura Y. Human lactoferrin induces asthmatic symptoms in NC/Nga mice. Physiol Rep 2017;5:e13365.
  42. Fernandez-Delgado L, Vega-Rioja A, Ventura I, Chamorro C, Aroca R, Prados M, Bobadilla P, Rodriguez D, Palacios R, Monteseirin J. Allergens induce the release of lactoferrin by neutrophils from asthmatic patients. PLoS One 2015;10:e0141278.
  43. Lim JM, Lee B, Min JH, Kim EY, Kim JH, Hong S, Kim JJ, Sohn Y, Jung HS. Effect of peiminine on DNCB-induced atopic dermatitis by inhibiting inflammatory cytokine expression in vivo and in vitro. Int Immunopharmacol 2018;56:135-142. https://doi.org/10.1016/j.intimp.2018.01.025
  44. Li L, Jin G, Jiang J, Zheng M, Jin Y, Lin Z, Li G, Choi Y, Yan G. Cornuside inhibits mast cell-mediated allergic response by down-regulating MAPK and NF-κB signaling pathways. Biochem Biophys Res Commun 2016;473:408-414. https://doi.org/10.1016/j.bbrc.2016.03.007
  45. Leung DY. Atopic dermatitis: new insights and opportunities for therapeutic intervention. J Allergy Clin Immunol 2000;105:860-876. https://doi.org/10.1067/mai.2000.106484
  46. Wullaert A, Bonnet MC, Pasparakis M. NF-κB in the regulation of epithelial homeostasis and inflammation. Cell Res 2011;21:146-158. https://doi.org/10.1038/cr.2010.175
  47. Kim MS, Lee DY. Insulin-like growth factor binding protein-3 enhances etoposide-induced cell growth inhibition by suppressing the NF-κB activity in gastric cancer cells. Mol Cell Biochem 2015;403:107-113. https://doi.org/10.1007/s11010-015-2341-2
  48. Tanaka A, Konno M, Muto S, Kambe N, Morii E, Nakahata T, Itai A, Matsuda H. A novel NF-kappaB inhibitor, IMD-0354, suppresses neoplastic proliferation of human mast cells with constitutively activated c-kit receptors. Blood 2005;105:2324-2331.  https://doi.org/10.1182/blood-2004-08-3247
  49. Park JH, Kim MS, Jeong GS, Yoon J. Xanthii fructus extract inhibits TNF-α/IFN-γ-induced Th2-chemokines production via blockade of NF-κB, STAT1 and p38-MAPK activation in human epidermal keratinocytes. J Ethnopharmacol 2015;171:85-93. https://doi.org/10.1016/j.jep.2015.05.039
  50. Dajee M, Muchamuel T, Schryver B, Oo A, Alleman-Sposeto J, De Vry CG, Prasad S, Ruhrmund D, Shyamsundar R, Mutnick D, et al. Blockade of experimental atopic dermatitis via topical NF-kappaB decoy oligonucleotide. J Invest Dermatol 2006;126:1792-1803. https://doi.org/10.1038/sj.jid.5700307
  51. Homey B, Steinhoff M, Ruzicka T, Leung DY. Cytokines and chemokines orchestrate atopic skin inflammation. J Allergy Clin Immunol 2006;118:178-189. https://doi.org/10.1016/j.jaci.2006.03.047