• 제목/요약/키워드: quantitative estimation

검색결과 802건 처리시간 0.033초

Radar Quantitative Precipitation Estimation using Long Short-Term Memory Networks

  • Thi, Linh Dinh;Yoon, Seong-Sim;Bae, Deg-Hyo
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2020년도 학술발표회
    • /
    • pp.183-183
    • /
    • 2020
  • Accurate quantitative precipitation estimation plays an important role in hydrological modelling and prediction. Instantaneous quantitative precipitation estimation (QPE) by utilizing the weather radar data is a great applicability for operational hydrology in a catchment. Previously, regression technique performed between reflectivity (Z) and rain intensity (R) is used commonly to obtain radar QPEs. A novel, recent approaching method which might be applied in hydrological area for QPE is Long Short-Term Memory (LSTM) Networks. LSTM networks is a development and evolution of Recurrent Neuron Networks (RNNs) method that overcomes the limited memory capacity of RNNs and allows learning of long-term input-output dependencies. The advantages of LSTM compare to RNN technique is proven by previous works. In this study, LSTM networks is used to estimate the quantitative precipitation from weather radar for an urban catchment in South Korea. Radar information and rain-gauge data are used to evaluate and verify the estimation. The estimation results figure out that LSTM approaching method shows the accuracy and outperformance compared to Z-R relationship method. This study gives us the high potential of LSTM and its applications in urban hydrology.

  • PDF

Maximum Entropy를 이용한 정량적 레이더 강우추정 불확실성 분석 (Uncertainty Analysis of Quantitative Radar Rainfall Estimation Using the Maximum Entropy)

  • 이재경
    • 대기
    • /
    • 제25권3호
    • /
    • pp.511-520
    • /
    • 2015
  • Existing studies on radar rainfall uncertainties were performed to reduce the uncertainty for each stage by using bias correction during the quantitative radar rainfall estimation process. However, the studies do not provide quantitative comparison with the uncertainties for all stages. Consequently, this study proposes a suitable approach that can quantify the uncertainties at each stage of the quantitative radar rainfall estimation process. First, the new approach can present initial and final uncertainties, increasing or decreasing the uncertainty, and the uncertainty percentage at each stage. Furthermore, Maximum Entropy (ME) was applied to quantify the uncertainty in the entire process. Second, for the uncertainty quantification of radar rainfall estimation at each stage, this study used two quality control algorithms, two rainfall estimation relations, and two bias correction techniques as post-processing and progressed through all stages of the radar rainfall estimation. For the proposed approach, the final uncertainty (ME = 3.81) from the ME of the bias correction stage was the smallest while the uncertainty of the rainfall estimation stage was higher because of the use of an unsuitable relation. Additionally, the ME of the quality control was at 4.28 (112.34%), while that of the rainfall estimation was at 4.53 (118.90%), and that of the bias correction at 3.81 (100%). However, this study also determined that selecting the appropriate method for each stage would gradually reduce the uncertainty at each stage. Finally, the uncertainty due to natural variability was 93.70% of the final uncertainty. Thus, the results indicate that this new approach can contribute significantly to the field of uncertainty estimation and help with estimating more accurate radar rainfall.

Non-Destructive Evaluation of Separation and Void Defect of a Pneumatic Tire by Speckle Shearing Interferometry

  • Kim, Koung-Suk;Kang, Ki-Soo;Jung, Hyun-Chul;Ko, Na-Kyong
    • Journal of Mechanical Science and Technology
    • /
    • 제18권9호
    • /
    • pp.1493-1499
    • /
    • 2004
  • This paper describes the speckle shearing interferometry, a non-destructive optical method, for quantitative estimation of void defect and monitoring separation defect inside of a pneumatic tire. Previous shearing interferometry has not supplied quantitative result of inside defect, due to effective factors. In the study, factors related to the details of an inside defect are classified and optimized with pipeline simulator. The size and the shape of defect can be estimated accurately to find a critical point and also is closely related with shearing direction. The technique is applied for quantitative estimation of defects inside of a pneumatic tire. The actual traveling tire is monitored to reveal the cause of separation and the starting points. And also unknown void defects on tread are inspected and the size and shape of defects are estimated which has good agreement with the result of visual inspection.

고밀도 지상강우관측망을 활용한 서울지역 정량적 실황강우장 산정 (Quantitative Precipitation Estimation using High Density Rain Gauge Network in Seoul Area)

  • 윤성심;이병주;최영진
    • 대기
    • /
    • 제25권2호
    • /
    • pp.283-294
    • /
    • 2015
  • For urban flash flood simulation, we need the higher resolution radar rainfall than radar rainfall of KMA, which has 10 min time and 1km spatial resolution, because the area of subbasins is almost below $1km^2$. Moreover, we have to secure the high quantitative accuracy for considering the urban hydrological model that is sensitive to rainfall input. In this study, we developed the quantitative precipitation estimation (QPE), which has 250 m spatial resolution and high accuracy using KMA AWS and SK Planet stations with Mt. Gwangdeok radar data in Seoul area. As the results, the rainfall field using KMA AWS (QPE1) is showed high smoothing effect and the rainfall field using Mt. Gwangdeok radar is lower estimated than other rainfall fields. The rainfall field using KMA AWS and SK Planet (QPE2) and conditional merged rainfall field (QPE4) has high quantitative accuracy. In addition, they have small smoothed area and well displayed the spatial variation of rainfall distribution. In particular, the quantitative accuracy of QPE4 is slightly less than QPE2, but it has been simulated well the non-homogeneity of the spatial distribution of rainfall.

An Integrated Sequential Inference Approach for the Normal Mean

  • Almahmeed, M.A.;Hamdy, H.I.;Alzalzalah, Y.H.;Son, M.S.
    • Journal of the Korean Statistical Society
    • /
    • 제31권4호
    • /
    • pp.415-431
    • /
    • 2002
  • A unified framework for statistical inference for the mean of the normal distribution to derive point estimates, confidence intervals and statistical tests is proposed. This optimal design is justified after investigating the basic information and requirements that are possible and impossible to control when specifying practical and statistical requirements. Point estimation is only credible when viewed in the larger context of interval estimation, since the information required for optimal point estimation is unspecifiable. Triple sampling is proposed and justified as a reasonable sampling vehicle to achieve the specifiable requirements within the unified framework.

지하공간의 사전보강 지보시스템에 대한 정략적 평가에 관한 연구 (Quantitative Estimation of Pre-improvement Support System on Underground Space)

  • 이재호;김영수;김광일;문홍득;김대만;황운섭
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 춘계 학술발표회 초청강연 및 논문집
    • /
    • pp.170-180
    • /
    • 2008
  • Successful design, construction and maintenance of NATM tunnel demands prediction, control, stability guidelines, the estimation pre-improvement support system and monitoring of surface settlement, gradient and ground displacement with high accuracy. Moreover, urban NATM tunnel under difficult geotechnical conditions is important the estimation and necessary of pre-improvement support system. Various strategies have been proposed for the quantitative estimation of pre-improvement support system. This paper was investigated and analysed an assessment technique for the quantitative estimation of pre-improvement support system on underground space, as mountain and urban tunnel, in detail. The analysis performed on design and construction stage with field database using the proposed stability estimation index by many researcher including the critical strain and the apparent Young's modulus concept.

  • PDF

Identification of the associations between genes and quantitative traits using entropy-based kernel density estimation

  • Yee, Jaeyong;Park, Taesung;Park, Mira
    • Genomics & Informatics
    • /
    • 제20권2호
    • /
    • pp.17.1-17.11
    • /
    • 2022
  • Genetic associations have been quantified using a number of statistical measures. Entropy-based mutual information may be one of the more direct ways of estimating the association, in the sense that it does not depend on the parametrization. For this purpose, both the entropy and conditional entropy of the phenotype distribution should be obtained. Quantitative traits, however, do not usually allow an exact evaluation of entropy. The estimation of entropy needs a probability density function, which can be approximated by kernel density estimation. We have investigated the proper sequence of procedures for combining the kernel density estimation and entropy estimation with a probability density function in order to calculate mutual information. Genotypes and their interactions were constructed to set the conditions for conditional entropy. Extensive simulation data created using three types of generating functions were analyzed using two different kernels as well as two types of multifactor dimensionality reduction and another probability density approximation method called m-spacing. The statistical power in terms of correct detection rates was compared. Using kernels was found to be most useful when the trait distributions were more complex than simple normal or gamma distributions. A full-scale genomic dataset was explored to identify associations using the 2-h oral glucose tolerance test results and γ-glutamyl transpeptidase levels as phenotypes. Clearly distinguishable single-nucleotide polymorphisms (SNPs) and interacting SNP pairs associated with these phenotypes were found and listed with empirical p-values.

비보험비용의 정량적 산출방안에 관한 연구 (A Study on Quantitative Estimation of Uninsured Cost)

  • 이태영;이종빈;장성록
    • 한국안전학회지
    • /
    • 제24권5호
    • /
    • pp.69-76
    • /
    • 2009
  • The estimation of costs from industrial accidents is very important because they have a serious effect on individuals, companies, and nation. The department of labor estimates the cost of accidents by using the "Heinrich" method. From that method, the scale of accident cost can be approximately computed, but accurate calculation of uninsured cost is not easy. Therefore, a better method of calculating uninsured cost caused by industrial accident is necessary. This study aimed to construct an estimation method of uninsured cost according to domestic circumstances. The results of this study are as follows: (1) This study derived applicable factors for quantitative estimation of industrial accident cost (2) This study made the equation that the calculation of each item of uninsured cost was possible (3) This study applied the uninsured cost by degrees of disaster to individual items (4) The subjects and types of occurrence in uninsured cost were analyzed and presented. Theses results will provide a basis for further researchers of uninsured cost.

Improved Attenuation Estimation of Ultrasonic Signals Using Frequency Compounding Method

  • Kim, Hyungsuk;Shim, Jaeyoon;Heo, Seo Weon
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권1호
    • /
    • pp.430-437
    • /
    • 2018
  • Ultrasonic attenuation is an important parameter in Quantitative Ultrasound and many algorithms have been proposed to improve estimation accuracy and repeatability for multiple independent estimates. In this work, we propose an improved algorithm for estimating ultrasonic attenuation utilizing the optimal frequency compounding technique based on stochastic noise model. We formulate mathematical compounding equations in the AWGN channel model and solve optimization problems to maximize the signal-to-noise ratio for multiple frequency components. Individual estimates are calculated by the reference phantom method which provides very stable results in uniformly attenuating regions. We also propose the guideline to select frequency ranges of reflected RF signals. Simulation results using numerical phantoms show that the proposed optimal frequency compounding method provides improved accuracy while minimizing estimation bias. The estimation variance is reduced by only 16% for the un-compounding case, whereas it is reduced by 68% for the uniformly compounding case. The frequency range corresponding to the half-power for reflected signals also provides robust and efficient estimation performance.

What Holds the Future of Quantitative Genetics? - A Review

  • Lee, Chaeyoung
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제15권2호
    • /
    • pp.303-308
    • /
    • 2002
  • Genetic markers engendered by genome projects drew enormous interest in quantitative genetics, but knowledge on genetic architecture of complex traits is limited. Complexities in genetics will not allow us to easily clarify relationship between genotypes and phenotypes for quantitative traits. Quantitative genetics guides an important way in facing such challenges. It is our exciting task to find genes that affect complex traits. In this paper, landmark research and future prospects are discussed on genetic parameter estimation and quantitative trait locus (QTL) mapping as major subjects of interest.