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Improved Attenuation Estimation of Ultrasonic Signals Using Frequency
Compounding Method

Hyungsuk Kim*, Jaeyoon Shim* and Seo Weon Heo†

Abstract – Ultrasonic attenuation is an important parameter in Quantitative Ultrasound and many
algorithms have been proposed to improve estimation accuracy and repeatability for multiple
independent estimates. In this work, we propose an improved algorithm for estimating ultrasonic
attenuation utilizing the optimal frequency compounding technique based on stochastic noise model.
We formulate mathematical compounding equations in the AWGN channel model and solve
optimization problems to maximize the signal-to-noise ratio for multiple frequency components.
Individual estimates are calculated by the reference phantom method which provides very stable
results in uniformly attenuating regions. We also propose the guideline to select frequency ranges of
reflected RF signals. Simulation results using numerical phantoms show that the proposed optimal
frequency compounding method provides improved accuracy while minimizing estimation bias. The
estimation variance is reduced by only 16% for the un-compounding case, whereas it is reduced by
68% for the uniformly compounding case. The frequency range corresponding to the half-power for
reflected signals also provides robust and efficient estimation performance.

Keywords: Ultrasound, Attenuation, Frequency compounding, Reference phantom method, 
Quantitative ultrasound

1. Introduction

Ultrasonic attenuation in soft tissues caused by signal
absorption and scattering aggravates conventional gray-
scale B-mode images by either shadowing or enhancement
effects for regions of relatively higher or lower attenuation.
However, this attenuation is also closely related to the
diagnostic information from the medium scanned, and
provides a fundamental background for further analysis 
of other medical ultrasonic parameters that include sound
speed, backscatterer size, and spacing in Quantitative 
Ultrasound (QUS). In consequence, the quantitative 
estimation of attenuation has been steadily investigated 
in the literature for decades, and there have been many 
algorithms published to estimate ultrasonic attenuation 
from backscattered RF (radiofrequency) signals or 
envelope data of analytic signals in both the time and
frequency domains. Applications of ultrasonic attenuation
to differentiate between the normal and benign tissues 
include liver diseases [1-4], and other areas, such as 
breast [5-8], bone [9-12], cervical [13-15] and thyroid [16]
diseases diagnosis.

In general, the attenuation property of propagated 
acoustic waves in soft tissues shows frequency-dependent
behavior, which means higher frequency components 

decay faster than lower ones. Hence the reflected RF 
signals are commonly analyzed in the frequency domain
using the Fourier transform to estimate attenuation
properties quantitatively [17-22]. Estimation methods in 
the frequency domain generally provide robust results to
additive noises, while those in the time domain are easier
to implement. The spectral domain method known as the 
reference phantom method [20] measures the ratio of
power spectra between the reference phantom and the
sample, and effectively compensates the diffraction effects
of propagating waves. It also easily eliminates system-
dependent parameters such as transmit pulse shape and
beam focus, and provides very accurate and stable
estimation results in the region where no backscatterer
property changes occur. However, the critical factor for
applying quantitative analysis to real clinical practice is
minimizing the estimation variance for multiple independent
estimates.

The characteristic of the ultrasonic attenuation in soft
tissues has been generally modeled to be linearly frequency-
dependent as the wave propagates, and the attenuation
property does not vary much depending on the frequency.
Therefore the conventional estimation method was to fix
some specific frequency (usually center frequency of the
modulated ultrasound signal) and estimate the attenuation
coefficient at that frequency component. However, it is
known that the Gaussian noise or scattering interferences
can hurt the accuracy of the attenuation estimation
significantly. Those noise and interferences are generally
frequency-dependent, so if we combine multiple estimates
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at different frequencies together then the estimation 
accuracy may be improved.

In this paper, we propose an improved attenuation 
estimation method by compounding individual attenuation
estimates, calculated in several different frequency regions.
The classical frequency compounding techniques have 
been mainly applied to reduce speckles and/or enhance 
contrast in B-mode images [23,24]. And the centroid 
downshift method [18], in a broad sense, which calculates
the spectral centroid of short-gated RF signal could be 
considered as one of means for frequency compounding 
technique, but it does not account for the noise 
characteristics as well as reflecting the properties of 
ultrasonic pulses. Since the power spectrum of short RF 
segment of a transmit pulse is generally modeled as
Gaussian distribution in the frequency domain, the signal-
to-noise ratio is also different for each frequency component.
In addition, acoustic noises might be added while ultrasonic
waves penetrating through soft tissues. Therefore simple 
averaging technique for multiple estimates which are 
estimated at different frequencies could not improve 
estimation performances in both accuracy and repeatability.

To effectively compound multiple estimates, we first 
derive the mathematical formulations for the given problem
based on the AWGN channel noise model. While the 
conventional frequency compounding methods simply 
apply the uniform averaging for individual estimates, the
proposed method provides the framework for compounding
multiple estimates under stochastic noise model. We then
solve the optimization problem to maximize the signal-to-
noise ratio at then given frequency component, and obtain
the optimal weights for compounding the multiple estimates
of several frequency regions. This optimization framework
would be extended with other ultrasonic noise model under
a different situation, and could be used to derive appropriate
weights for optimal compounding.

We show three ways of frequency compounding methods
and investigate the numerical simulation results to compare
the estimation performances. We also propose the guideline
for selecting frequency ranges to improve estimation 
performance by the experimental results using numerical
tissue-mimicking phantoms.

This paper is organized as follows: Section II presents a
brief summary of the reference phantom method and the
mathematical formulations of the problem based on the 
stochastic channel model. In Section III, we solve the 
optimization problem to derive the optimal weighting 
coefficients for compounding in the frequency region, 
and also propose three possible compounding methods. 
Section IV shows simulation results using numerical 
tissue-mimicking phantoms to compare the estimation 
performances of accuracy and variances. We also compare
estimation performances with respect to the range of 
frequency components (or the number of frequency 
components) for the compounding technique. The 
following section summarizes the contributions of this

paper and shows the application areas.

2. Theoretical Background

2.1 The reference phantom method

Assuming the Born approximation, the intensity of
reflected RF signal in the frequency domain, �(�, �), can
be represented by the product of the transmit pulse �(�),
the diffraction property �(�, �), and the attenuation and
backscatterer terms of �(�, �) and �(�) as:

�(�, �) = �(�) ∙ �(�, �) ∙ �(�, �) ∙ �(�) (1)

where � denotes the depth from the transducer. In (1), the
first two terms, �(�) and �(�, �), are considered system-
dependent properties, while the terms of �(�, �) and �(�)
are directly related to the scanned tissue properties. In 
the reference phantom method, the system-dependent 
terms are effectively eliminated by dividing the intensity
of backscattered signals from a sample by that from a
reference phantom whose attenuation properties are already
known [20]. The ratio of backscattered signals, ��(�, �),
between the sample and reference phantom is represented
by the ratio of the only tissue-dependent terms, given by:

	��(�, �) =
��(�, �)

��(�, �)
=
�(�)�(�, �)��(�, �)��(�)

�(�)�(�, �)��(�, �)��(�)
	

=
��(�, �)��(�)

��(�, �)��(�)
(2)

where the subscripts 	� and � represent the sample and
reference, respectively. Since the attenuation property in
soft tissues is generally assumed to be linearly frequency-
dependent [21], the ratio of backscattered signals shown in
(2) can be represented by:

	��(�, �) =
��(�)

��(�)
exp{−4(�� − ��)��} (3)

where � is termed the attenuation coefficient in units of
dB/cm/MHz. After taking the natural logarithm of the
above equation, we apply least square line fitting with
respect to the propagation depth � to the log of the
intensity ratio, �(�, �), and finally obtain the attenuation
difference as follows:

	�∆(�) = �� − �� =
1

4�

��(�, �)

��
(4)

Note that we assume the attenuation property in soft
tissues is linearly proportional to the frequency, so
theoretically the above equation can be calculated at any
single frequency component.



Improved Attenuation Estimation of Ultrasonic Signals Using Frequency Compounding Method

432 │ J Electr Eng Technol.2018; 13(1): 430-437

2.2 Noise modeling

For the case where a random noise is added to the
backscattered signals, the ratio of power spectra between
the sample and reference phantom in the frequency domain
in (2) is rewritten and given by:

��(�, �) =
��(�, �)

��(�, �)

=
�(�)�(�, �)��(�, �)��(�) + ��(�)

�(�)�(�, �)��(�, �)��(�) + ��(�)

=
��(�)��(�, �) �1 +

��(�)
�(�)�(�, �)��(�, �)��(�)

�

��(�)��(�, �) �1 +
��(�)

�(�)�(�, �)��(�, �)��(�)
�

(5)

where ��(�) and ��(�) represent noise random processes
of the reference and sample, respectively. To obtain the
final attenuation difference, we can derive the natural
logarithm of this ratio as follows:

�(�, �) = log ��(�, �) = log
��(�)

��(�)
+4(�� − ��)��

+ log�
1+

��(�)
�(�)�(�, �)��(�, �)��(�)

1 +
��(�)

�(�)�(�, �)��(�, �)��(�)

�
(6)

Assuming that the intensity of noise is generally much 
smaller than that of the backscattered RF signals both for 
the reference and sample (i.e., (�) ≪ �(�)�(�, �)	
	�(�, �)�(�)), and using the Taylor series approximation
of log	(1 + �) ≈ � if |�| ≪ 1, then the third term of the
above equation is approximated by:

log�
1 +

��(�)
�(�)�(�, �)��(�, �)��(�)

1 +
��(�)

�(�)�(�, �)��(�, �)��(�)

�			

≈ log �1 +
��(�)

�(�)�(�, �)��(�, �)��(�)
�

≈
��(�)

�(�)�(�, �)��(�, �)��(�)

=
��(�)

�(�)�(�, �) exp(−4����)��(�)

(7)

which is the inverse of the signal-to-noise ratio of the
backscattered RF signal. Using this approximation result,
the noise term in the nonlinear function in (6) can be
simplified as the additive channel noise model given by:

�(�, �) = log
��(�)

��(�)
+4(�� − ��)�� (8)

	+
��(�)

�(�)�(�, �)exp	(−4����)��(�)

To calculate the difference of attenuation coefficients
between the sample and reference phantom, we apply (4) to
(8), then the results can be represented by:

��∆(�) = �∆(�) +
����(�)

�(�)�(�, �) exp(−4����)��(�)

													 = �∆(�) +��(�)

(9)

As shown in (9), the additive noise random process,
��(�) corrupts the natural logarithm of the power ratio
between the sample and reference. If we assume that
E���(�)� = �� where �� is the power spectral density of
AWGN random process, we can think of	��(�) as a noise
random process that is inversely proportional to the
backscattered signal intensity or the signal to noise ratio of
the received signal at the frequency �.

Therefore, if we obtain attenuation estimates from
several different frequency components, we can improve
the estimation accuracy and/or reduce the estimation
variance by the optimal-weighted compounding the
individual estimation results under the stochastic noise
model. In the next section, we propose three frequency
compounding methods for the reference phantom method,
and compare their estimation performances.

3. Frequency Compounding Methods

3.1 Largest SNR selection (LSS)

The original reference phantom method estimates
attenuation coefficients with respect to several single
frequency components, and analyzes the frequency-
dependency of the attenuation property in soft tissues. The
first method of frequency domain compounding is the
selection of just one frequency component. This is not a
compounding technique, but provides the bottom line of
estimation performance for comparison. When we select
the frequency at which the attenuation coefficient is
calculated, the modulation center frequency of a transmit
pulse is one of the candidates where the signal strength
might usually be maximum, though sometimes (or in some
depths) it might not be correct. The spectral centroid using
the power spectrum of the ROI will be an alternative
choice of this method, because of the frequency-dependent
attenuation property in soft tissues. Otherwise we can
choose the best frequency component given by the
following optimization process:

��∆ = ��∆(��)	where	

�� = argmax
�

�(�)�(�, �)exp	(−4����)��(�)
(10)
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where ��∆(��) is given by (9).

3.2 Uniform Weight Compounding (UWC)

In this compounding method, we average attenuation
estimates of each frequency component with equal weights,
so the estimation is given by:

��∆ =
�

���
∑ ��∆(��)
���
��� 	where

	�� ∈ ��� −��∆ ∶ 	� = −
�

2
~
�

2
�

(11)

where �� may be either the center frequency of a transmit
pulse or the centroid of power spectrum at a given depth,
and �∆ represents the frequency step between adjacent
frequency components.

When applying this method, it is critical to choose the
appropriate set of frequency components – frequency range
and number of components. Adding frequency components
from the lower SNR range will degrade the estimation
accuracy and variance, especially at deeper depths. The
rule of thumb in estimation theory is that the SNR
corresponding to the frequencies to be combined should be
high enough - for example, larger than 10. In this paper, we
compare the estimation performances with respect to the
number of frequency components those are averaged, and
provide a guideline to select the proper number of
frequency components.

3.3 Optimal Weight Compounding (OWC)

In this method, we derive the optimal compounding
weights for each frequency component to get the maximum
SNR at the output of the combiner as follows:

��∆ = ∑ ����∆(��)
�
��� where ∑ �� = 1�

��� , (12)

where �� is the compounding weights for the frequency at
�� .

To derive the optimal compounding weights, we assume
that the estimated attenuation coefficient corresponding to
each frequency component is unbiased and not frequency-
selective, i.e., �∆(��) = �∆. Then the signal-to-noise ratio
after the frequency compounding is given by:

��� = max
���:∑ ��

�
��� ���

�∑ ��
�
��� �∆(��)�

�

� ��∑ ��
�
��� ��(��)�

�
�

							= max
���:∑ ��

�
��� ���

(�∆)
�

�[(∑ ��
�
��� ��(��))

�]

(13)

If we assume that the noise signal ��(��) ’s are
independent and identically distributed of noise random
process and the expectation value is �[|��(��)|

�] = �� ,

then we can formulate the problem to derive the optimal
weight by:

���� = argmax
���:∑ ��

�
��� ���

(�∆)
�

∑ ��
��

��� ��

										= argmin
���:∑ ��

�
��� ���

���
�

�

���

��

(14)

The constrained optimization problem of (14) can be
easily solved by the Lagrange multiplier method by
transforming (14) into an unconstrained optimization
problem as follows:

���� = argmin
{��,�}

���
�

�

���

�� +� ����

�

���

− 1� (15)

By differentiating (15) with respect to � and �� ′�, we
obtain:

2���� + � = 0 for � = 1,⋯ ,� and ∑ �� = 1�
��� .

These can easily be shown to be:

��,��� =

1
��

∑
1
��

�
���

(16)

Since
�

��
represents the signal-to-noise ratio of the

received signal at the frequency �� , (16) shows that the
optimal compounding weights of the frequency component
is proportional to the SNR ratio, or to the signal strength of
the backscattered signal at the frequency component of �� .
This result is similar to the maximal ratio combining
method in the wireless communication system.

4. Results

In this paper, we use simulated numerical phantoms,
which is a frequency-domain model based on the classical
diffraction theory for continuous wave propagation [25].
The size of a phantom is 40 mm (width) x 80 mm (height),
and it consists of randomly distributed 25 μm glass beads
with a sound speed of 1540 m/s. We set the attenuation
coefficients of phantoms to 0.3 dB/cm/MHz and 0.5
dB/cm/MHz for the reference phantom and sample,
respectively. The entire phantom is divided into small
blocks of 4 mm x 4 mm to calculate the block power
spectrum, and a block overlap ratio of 50 % is applied in
both the axial and lateral directions. The beam focus is set
to 40 mm, and each RF segment is tapered by the Hanning
window to minimize artifacts of spectral leakage. Table 1
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shows all of the other simulation parameters.
Fig. 1 shows illustrative weighting factors of the two

compounding methods (i.e., UWC and OWC). The power
spectrum of received signals is assumed as the Gaussian 
distribution and its magnitude is normalized by the 
maximum value. The number of compounding frequency
components is set to seven, and the power spectrum of 
reflected RF signals shown in dashed line is Gaussian, 
with center frequency of 5MHz. The uniform weight 
compounding (UWC) method averages seven attenuation
estimates between 3.5MHz and 6.5MHz (the frequency 
step is 0.5MHz) with equal weighting factor of 0.143, 
while the optimal weight compounding (OWC) averages 
them with different weighting factors that are proportional
to the signal strength, under the assumption of the additive
white Gaussian noise model.

Table 1. Simulation parameters of a numerical phantom

Transducer Type Linear Array
Element Size 0.2 mm x 10 mm

Number of Elements 128
Element Spacing 0.2 mm

F-number 2
Center Frequency 5 MHz

Bandwidth 80 %
Beam Focus 40 mm

Fig. 2. Estimated attenuation coefficients over the entire
depth. The attenuation coefficients for the reference
phantom and sample are 0.3 and 0.5 dB/cm/MHz,
respectively, and the beam focus is set to 40 mm.
The errorbars represent the estimation variances at
each depth

Fig. 2 shows the estimation results of the attenuation
coefficients along the depth. The errorbars represent the
estimation variances at each depth. For the LSS method,
the centroid of the power spectrum is selected as the 
compounding frequency component since its SNR is 
maximized at each depth. For the UWC and OWC methods,
frequency components are chosen from the range of 50% 
FWHM of the power spectrum with a frequency step of 
0.1MHz. While the LSS method shows the worst estimation
performance with the relatively largest estimation variances,
the UWC and OWC methods exhibit similar estimation
performances for the entire depth. For the estimation 
variance, however, the OWC method provides more stable
results than the UWC method, especially for the deeper
depth that lies after the beam focus. The average estimation
variance for the OWC method is only 16% of that for the 
LSS method, and 68% for the UWC method over the 
entire depth. Although the difference of attenuation 
coefficients between the reference phantom and sample
generally provides the estimation bias (which is shown by
overestimation or underestimation), the OWC method also
improves the estimation accuracy for the entire depth.

When the frequency compounding methods are applied,
the range of frequency components (or the number of
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Fig. 1. Illustrative weighting factors of the combining
methods. Seven frequency components are selected
centered at 5MHz, with a frequency step of 0.5
MHz. The dashed line is assumed to be a power
spectrum of the received signals: (a) Uniform 
weight combining, and (b) Optimal weight 
combining
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frequency components) is also related to the estimation
accuracy and variance. Since the power intensity of the
reflected RF signals rapidly decreases far from the center
frequency, the frequency compounding with the proper
number (or range) of frequency components may increases
computational efficiency while maintaining estimation
accuracy. Fig. 3 shows the estimation variances with
respect to the number of frequency components for
compounding at the two depths of 20mm and 40mm. The
simulation parameters are same as the Table 1. In our
simulation, we choose the frequency step between adjacent
frequencies to be 0.1 MHz, so for example, 40 frequency
components means a frequency range between 3 MHz and
7 MHz with a centroid of 5 MHz, which is theoretically the
half power range for a transmit pulse of 80% FWHM.
Though more frequency components provide smaller initial
estimation variances, this no longer applies when too many
components are accounted since the signal power may be

lower than the noise level. It is difficult to state the optimal
number of frequency components for compounding, but in
our simulation, the half-power frequency range of the
reflected RF signals provides a good rule-of-thumb for a
robust and efficient estimation performance.

5. Discussion

The proposed method in this paper improves estimation
accuracy using the optimal frequency compounding based
on the stochastic channel noise model, and we provide
additional considerations to compounding individual 
estimates at different frequencies. We derived mathematical
formulation of this compounding problem and optimal
compounding methods based on the assumption of the
Gaussian noise model.

As for the numerical simulations done in this paper, the
lateral dimension of a numerical phantom is not considered
for the beam width of an individual A-line. This comes
from the limitation of simulation package used, but the
authors believe that it does not affect the simulation results
shown in this paper because the number of scatterers and
distance between beam lines are specified. Since each
block that computes power spectrum of echo signals,
contains enough number of independent beam lines, its
spectral property might be calculated accurately to estimate
attenuation coefficients.

The bandwidth of a transmit pulse could be one of
parameters to determine the range of frequency components
for compounding. It is easily assumed that the lager the
usable frequency range, the better the quantitative estimates.
In this paper, we proposed an experimental guideline to
determine the effective frequency range arguing that whose
signal strengths are above half-power. The analytical
derivations for the optimal frequency range with respect to
the bandwidth of a pulse remain for the further study.

6. Conclusion

Quantitative analysis in medical ultrasound has provided
much information about the pathological state of soft
tissues. The attenuation property of scanned tissues is one
of fundamental measures for medical ultrasound, and 
many researches have striven to improve their estimation
accuracy. However, the repeatability of attenuation 
estimation, which is commonly measured by an estimation
variance, is another crucial factor to apply the results of
quantitative analysis to clinical practice.

In this paper, we propose a novel optimal compounding
method that uses a stochastic noisy channel model for the 
reference phantom method. This provides very good 
estimation performances in the uniformly attenuating 
region, without changes of the backscatterer property. 
Since the transmit pulse has a maximum energy around 

(a)

(b)

Fig. 3. Estimation variances for the number of frequency
components. The frequency components are
selected centered at the centroid of power spectrum
at each depth with a frequency step of 0.1MHz: (a)
20mm, and (b) 40mm
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the center frequency, and is generally modeled by a
Gaussian distribution, the power intensity of reflected RF
signals also exhibits different signal strength at individual
frequency components. Therefore, the overall estimation 
performances might be improved by compounding estimates
at multiple frequency components with appropriate weighting
factors. Under the assumption of an AWGN channel model,
we derive optimal weights for the compounding that are
inversely proportional to the noise level, or proportional to
the signal strength of the individual frequency component.

Simulation results using numerical phantoms show that
estimation results after applying frequency compounding
are much better than the single frequency component. For
the frequency compounding methods, the proposed OWC
method exhibits more accurate and unbiased estimation
results than the UWC method, that uniformly averages all
frequency components. In our simulation, the frequency
range corresponding to the half-power of the reflected
RF signal provides a robust and efficient estimation 
performance.
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