• Title/Summary/Keyword: quadratic cost function

Search Result 123, Processing Time 0.022 seconds

공조 시스템용 DDC의 온라인 최적제어에 관한 연구

  • 안병천
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.11
    • /
    • pp.1072-1078
    • /
    • 2001
  • The real time optimal control algorithm of the DDC controller for chilled water and supply air temperature set-point of heating, ventilating, air-conditioning and refrigeration systems has been researched for minimization of the total power which is consumed by the chiller, chilled water pump and air handing unit fan. The study has been done by using TRNSYS program in order to analyze the central cooling system in terms of the environmental variables such as indoor cooling lead and wet-bulb temperature. This optimal control alogorithm saves more energy and is suitable for real time on-line control in comparison with conventional method.

  • PDF

A TUTORIAL ON LINEAR QUADRATIC OPTIMAL GUIDANCE FOR MISSILE APPLICATIONS

  • TAHK, MIN-JEA
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.19 no.3
    • /
    • pp.217-234
    • /
    • 2015
  • In this tutorial the theoretical background of LQ optimal guidance is reviewed, starting from calculus of variations. LQ optimal control is then introduced and applied to missile guidance to obtain the basic form of LQ optimal guidance laws. Extension of LQ optimal guidance methodology for handling weighted cost function, dynamic lag associated with the missile dynamics and the autopilot, constrained impact angle, and constrained impact time is also described with a brief discussion on the asymptotic properties of the optimal guidance laws. Furthermore, an introduction to polynomial guidance and generalized impactangle-control guidance, which are closed related with LQ optimal guidance, is provided to demonstrate the current status of missile guidance techniques.

Optimal Design of a Heat Sink using the Sequential Approximate Optimization Algorithm (순차적 근사최적화 기법을 이용한 방열판 최적설계)

  • Park Kyoungwoo;Choi Dong-Hoon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.12
    • /
    • pp.1156-1166
    • /
    • 2004
  • The shape of plate-fin type heat sink is numerically optimized to acquire the minimum pressure drop under the required temperature rise. In constrained nonlinear optimization problems of thermal/fluid systems, three fundamental difficulties such as high computational cost for function evaluations (i.e., pressure drop and thermal resistance), the absence of design sensitivity information, and the occurrence of numerical noise are commonly confronted. Thus, a sequential approximate optimization (SAO) algorithm has been introduced because it is very hard to obtain the optimal solutions of fluid/thermal systems by means of gradient-based optimization techniques. In this study, the progressive quadratic response surface method (PQRSM) based on the trust region algorithm, which is one of sequential approximate optimization algorithms, is used for optimization and the heat sink is optimized by combining it with the computational fluid dynamics (CFD).

Neuro-Fuzzy Control of Interior Permanent Magnet Synchronous Motors: Stability Analysis and Implementation

  • Dang, Dong Quang;Vu, Nga Thi-Thuy;Choi, Han Ho;Jung, Jin-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1439-1450
    • /
    • 2013
  • This paper investigates a robust neuro-fuzzy control (NFC) method which can accurately follow the speed reference of an interior permanent magnet synchronous motor (IPMSM) in the existence of nonlinearities and system uncertainties. A neuro-fuzzy control term is proposed to estimate these nonlinear and uncertain factors, therefore, this difficulty is completely solved. To make the global stability analysis simple and systematic, the time derivative of the quadratic Lyapunov function is selected as the cost function to be minimized. Moreover, the design procedure of the online self-tuning algorithm is comparatively simplified to reduce a computational burden of the NFC. Next, a rotor angular acceleration is obtained through the disturbance observer. The proposed observer-based NFC strategy can achieve better control performance (i.e., less steady-state error, less sensitivity) than the feedback linearization control method even when there exist some uncertainties in the electrical and mechanical parameters. Finally, the validity of the proposed neuro-fuzzy speed controller is confirmed through simulation and experimental studies on a prototype IPMSM drive system with a TMS320F28335 DSP.

An Auto-Tunning Fuzzy Rule-Based Visual Servoing Algorithm for a Alave Arm (자동조정 퍼지룰을 이용한 슬레이브 암의 시각서보)

  • Kim, Ju-Gon;Cha, Dong-Hyeok;Kim, Seung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.10
    • /
    • pp.3038-3047
    • /
    • 1996
  • In telerobot systems, visual servoing of a task object for a slave arm with an eye-in-hand has drawn an interesting attention. As such a task ingenerally conducted in an unstructured environment, it is very difficult to define the inverse feature Jacobian matrix. To overcome this difficulty, this paper proposes an auto-tuning fuzzy rule-based visual servo algorithm. In this algorithm, a visual servo controller composed of fuzzy rules, receives feature errors as inputs and generates the change of have position as outputs. The fuzzy rules are tuned by using steepest gradient method of the cost function, which is defined as a quadratic function of feature errors. Since the fuzzy rules are tuned automatically, this method can be applied to the visual servoing of a slave arm in real time. The effctiveness of the proposed algorithm is verified through a series of simulations and experiments. The results show that through the learning procedure, the slave arm and track object in real time with reasonable accuracy.

Car-following Motion Planning for Autonomous Vehicles in Multi-lane Environments (자율주행 차량의 다 차선 환경 내 차량 추종 경로 계획)

  • Seo, Changpil;Yi, Kyoungsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.11 no.3
    • /
    • pp.30-36
    • /
    • 2019
  • This paper suggests a car-following algorithm for urban environment, with multiple target candidates. Until now, advanced driver assistant systems (ADASs) and self-driving technologies have been researched to cope with diverse possible scenarios. Among them, car-following driving has been formed the groundwork of autonomous vehicle for its integrity and flexibility to other modes such as smart cruise system (SCC) and platooning. Although the field has a rich history, most researches has been focused on the shape of target trajectory, such as the order of interpolated polynomial, in simple single-lane situation. However, to introduce the car-following mode in urban environment, realistic situation should be reflected: multi-lane road, target's unstable driving tendency, obstacles. Therefore, the suggested car-following system includes both in-lane preceding vehicle and other factors such as side-lane targets. The algorithm is comprised of three parts: path candidate generation and optimal trajectory selection. In the first part, initial guesses of desired paths are calculated as polynomial function connecting host vehicle's state and vicinal vehicle's predicted future states. In the second part, final target trajectory is selected using quadratic cost function reflecting safeness, control input efficiency, and initial objective such as velocity. Finally, adjusted path and control input are calculated using model predictive control (MPC). The suggested algorithm's performance is verified using off-line simulation using Matlab; the results shows reasonable car-following motion planning.

Balance-Swap Optimization of Economic Load Dispatch Problem using Quadratic Fuel Cost Function (이차 발전비용함수를 사용한 경제급전문제의 균형-교환 최적화)

  • Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.4
    • /
    • pp.243-250
    • /
    • 2014
  • In this paper, I devise a balance-swap optimization (BSO) algorithm to solve economic load dispatch with a quadratic fuel cost function. This algorithm firstly sets initial values to $P_i{\leftarrow}P_i^{max}$, (${\Sigma}P_i^{max}$ > $P_d$) and subsequently entails two major processes: a balance process whereby a generator's power i of $_{max}\{F(P_i)-F(P_i-{\alpha})\}$, ${\alpha}=_{min}(P_i-P_i^{min})$ is balanced by $P_i{\leftarrow}P_i-{\alpha}$ until ${\Sigma}P_i=P_d$; and a swap process whereby $_{max}\{F(P_i)-F(P_i-{\beta})\}$ > $_{min}\{F(P_i+{{\beta})-F(P_j)\}$, $i{\neq}j$, ${\beta}$ = 1.0, 0.1, 0.1, 0.01, 0.001 is set at $P_i{\leftarrow}P_i-{\beta}$, $P_j{\leftarrow}P_j+{\beta}$. When applied to 15, 20, and 38-generators benchmark data, this simple algorithm has proven to consistently yield the best possible results. Moreover, this algorithm has dramatically reduced the costs for a centralized operation of 73-generators - a sum of the three benchmark cases - which could otherwise have been impossible for independent operations.

Study on Pattern Synthesis of Conformal Array Antenna Using Enhanced Adaptive Genetic Algorithm (향상된 적응형 유전 알고리즘을 이용한 컨포멀 배열 안테나의 빔 합성 연구)

  • Seong, Cheol-Min;Lee, Jae-Duk;Han, In-Hee;Ryu, Hong-Kyun;Lee, Kyu-Song;Park, Dong-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.5
    • /
    • pp.592-600
    • /
    • 2014
  • This paper proposes an enhanced adaptive genetic algorithm(EAGA) dedicated to pattern synthesis of array antenna which conforms to a curved surface of rotation with quadratic function. EAGA combines adaptive genetic algorithm(AGA) with invasive weed optimization(IWO) for the faster convergence and the lower cost value of the cost function. The amplitude and phase of each excited weighting factor are optimized to meet the required goals using EAGA. The EAGA results indicate that the proposed algorithm is superior to AGA when applied to the problem of conformal array antenna pattern synthesis.

A New Approach for Hierarchical Optimization of Large Scale Non-linear Systems (대규모 비선형 시스템의 새로운 계층별 최적제어)

  • Park, Joon-Hoon;Kim, Jong-Boo
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.36T no.2
    • /
    • pp.21-31
    • /
    • 1999
  • This paper presents a new possibility of calculating optimal control for large scale which consist of non-linear dynamic sub-systems using two level hierarchical structures method. And the proposed method is based on the idea of block pulse transformation to simplify the algorithm and its calculation. This algorithm used an expansion around the equilibrium point of the system to fix the second and higher order terms. These terms are compensated for iteratively at the second level by providing a prediction for the states and controls which form of a part of the higher order terms. In this new approach the quadratic penalty terms are not used in the cost function. This allows convergence over a longer time horizon and also provides faster convergence. And the method is applied to the problem of optimization of the synchronous machine. Results show that the new approach is superior to conventional numerical method or other previous algorithm.

  • PDF

Optimal load distribution for two cooperating robot arms using force ellipsoid

  • Choi, Myoung-Hwan;Cho, Hye-Kyung;Lee, Bum-Hee;Ko, Myoung-Sam
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1790-1795
    • /
    • 1991
  • The optimal load distribution for two cooperating robots is studied in this paper, and a new solution approach utilizing force ellipsoid is proposed. The load distribution problem is formulated as a nonlinear optimization problem with a quadratic cost function. The limit on instantaneous power is considered in the problem formulation as the joint torque constraints. The optimal solution minimizing energy consumption is obtained using the concept of force ellipsoid and the nonlinear optimization theory. The force ellipsoid provides a useful geometrical insight into the load distribution problem. Despite the presence of the joint torque constraints, the optimal solution is obtained almost as a closed form, in which the joint torques are given in terms of a single scalar parameter that can be obtained numerically by solving a scalar equation.

  • PDF