• Title/Summary/Keyword: q-hypergeometric series

Search Result 47, Processing Time 0.017 seconds

A SUMMATION FORMULA OF 6F5(1)

  • Choi, June-Sang;Arjun K.;Shaloo Malani
    • Communications of the Korean Mathematical Society
    • /
    • v.19 no.4
    • /
    • pp.775-778
    • /
    • 2004
  • The authors aim at obtaining an interesting result for a special summation formula for $_{6F_5}$(1), by comparing two generalized Watson's theorems on the sum of a $_{3F_2}$ obtained earlier by Mitra and Lavoie et. al.

q-SOBOLEV ORTHOGONALITY OF THE q-LAGUERRE POLYNOMIALS {Ln(-N)(·q)}n=0 FOR POSITIVE INTEGERS N

  • Moreno, Samuel G.;Garcia-Caballe, Esther M.
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.5
    • /
    • pp.913-926
    • /
    • 2011
  • The family of q-Laguerre polynomials $\{L_n^{(\alpha)}({\cdot};q)\}_{n=0}^{\infty}$ is usually defined for 0 < q < 1 and ${\alpha}$ > -1. We extend this family to a new one in which arbitrary complex values of the parameter ${\alpha}$ are allowed. These so-called generalized q-Laguerre polynomials fulfil the same three term recurrence relation as the original ones, but when the parameter ${\alpha}$ is a negative integer, no orthogonality property can be deduced from Favard's theorem. In this work we introduce non-standard inner products involving q-derivatives with respect to which the generalized q-Laguerre polynomials $\{L_n^{(-N)}({\cdot};q)\}_{n=0}^{\infty}$, for positive integers N, become orthogonal.

FORMULAS DEDUCIBLE FROM A GENERALIZATION OF GOTTLIEB POLYNOMIALS IN SEVERAL VARIABLES

  • Choi, Junesang
    • Honam Mathematical Journal
    • /
    • v.34 no.4
    • /
    • pp.603-614
    • /
    • 2012
  • Gottlieb polynomials were introduced and investigated in 1938, and then have been cited in several articles. Very recently Khan and Akhlaq introduced and investigated Gottlieb polynomials in two and three variables to give their generating functions. Subsequently, Khan and Asif investigated the generating functions for the $q$-analogue of Gottlieb polynomials. In this sequel, by modifying Khan and Akhlaq's method, Choi presented a generalization of the Gottlieb polynomials in $m$ variables to present two generating functions of the generalized Gottlieb polynomials ${\varphi}^m_n({\cdot})$. Here, we show that many formulas regarding the Gottlieb polynomials in m variables and their reducible cases can easily be obtained by using one of two generating functions for Choi's generalization of the Gottlieb polynomials in m variables expressed in terms of well-developed Lauricella series $F^{(m)}_D[{\cdot}]$.

A SUMMATION FORMULA FOR THE SERIES 3F2 DUE TO FOX AND ITS GENERALIZATIONS

  • Choi, Junesang;Rathie, Arjun K.
    • Communications of the Korean Mathematical Society
    • /
    • v.30 no.2
    • /
    • pp.103-108
    • /
    • 2015
  • Fox [2] presented an interesting identity for $_pF_q$ which is expressed in terms of a finite summation of $_pF_q$'s whose involved numerator and denominator parameters are different from those in the starting one. Moreover Fox [2] found a very interesting and general summation formula for $_3F_2(1/2)$ as a special case of his above-mentioned general identity with the help of Kummer's second summation theorem for $_2F_1(1/2)$. Here, in this paper, we show how two general summation formulas for $$_3F_2\[\array{\hspace{110}{\alpha},{\beta},{\gamma};\\{\alpha}-m,\;\frac{1}{2}({\beta}+{\gamma}+i+1);}\;{\frac{1}{2}}\]$$, m being a nonnegative integer and i any integer, can be easily established by suitably specializing the above-mentioned Fox's general identity with, here, the aid of generalizations of Kummer's second summation theorem for $_2F_1(1/2)$ obtained recently by Rakha and Rathie [7]. Several known results are also seen to be certain special cases of our main identities.

BAILEY PAIRS AND STRANGE IDENTITIES

  • Lovejoy, Jeremy
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.5
    • /
    • pp.1015-1045
    • /
    • 2022
  • Zagier introduced the term "strange identity" to describe an asymptotic relation between a certain q-hypergeometric series and a partial theta function at roots of unity. We show that behind Zagier's strange identity lies a statement about Bailey pairs. Using the iterative machinery of Bailey pairs then leads to many families of multisum strange identities, including Hikami's generalization of Zagier's identity.

A STUDY OF Q-CONTIGUOUS FUNCTION RELATIONS

  • Harsh, Harsh Vardhan;Kim, Yong Sup;Rakha, Medhat Ahmed;Rathie, Arjun Kumar
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.1
    • /
    • pp.65-94
    • /
    • 2016
  • In 1812, Gauss obtained fifteen contiguous functions relations. Later on, 1847, Henie gave their q-analogue. Recently, good progress has been done in finding more contiguous functions relations by employing results due to Gauss. In 1999, Cho et al. have obtained 24 new and interesting contiguous functions relations with the help of Gauss's 15 contiguous relations. In fact, such type of 72 relations exists and therefore the rest 48 contiguous functions relations have very recently been obtained by Rakha et al.. Thus, the paper is in continuation of the paper [16] published in Computer & Mathematics with Applications 61 (2011), 620.629. In this paper, first we obtained 15 q-contiguous functions relations due to Henie by following a different method and then with the help of these 15 q-contiguous functions relations, we obtain 72 new and interesting q-contiguous functions relations. These q-contiguous functions relations have wide applications.

Generalizations of Dixon's and Whipple's Theorems on the Sum of a 3F2

  • Choi, Junesang;Malani, Shaloo;Rathie, Arjun K.
    • Kyungpook Mathematical Journal
    • /
    • v.47 no.3
    • /
    • pp.449-454
    • /
    • 2007
  • InIn this paper we consider generalizations of the classical Dixon's theorem and the classical Whipple's theorem on the sum of a $_3F_2$. The results are derived with the help of generalized Watson's theorem obtained earlier by Mitra. A large number of results contiguous to Dixon's and Whipple's theorems obtained earlier by Lavoie, Grondin and Rathie, and Lavoie, Grondin, Rathie and Arora follow special cases of our main findings.

  • PDF