• 제목/요약/키워드: q-hypergeometric functions

검색결과 38건 처리시간 0.018초

A STUDY OF Q-CONTIGUOUS FUNCTION RELATIONS

  • Harsh, Harsh Vardhan;Kim, Yong Sup;Rakha, Medhat Ahmed;Rathie, Arjun Kumar
    • 대한수학회논문집
    • /
    • 제31권1호
    • /
    • pp.65-94
    • /
    • 2016
  • In 1812, Gauss obtained fifteen contiguous functions relations. Later on, 1847, Henie gave their q-analogue. Recently, good progress has been done in finding more contiguous functions relations by employing results due to Gauss. In 1999, Cho et al. have obtained 24 new and interesting contiguous functions relations with the help of Gauss's 15 contiguous relations. In fact, such type of 72 relations exists and therefore the rest 48 contiguous functions relations have very recently been obtained by Rakha et al.. Thus, the paper is in continuation of the paper [16] published in Computer & Mathematics with Applications 61 (2011), 620.629. In this paper, first we obtained 15 q-contiguous functions relations due to Henie by following a different method and then with the help of these 15 q-contiguous functions relations, we obtain 72 new and interesting q-contiguous functions relations. These q-contiguous functions relations have wide applications.

NOTE ON THE CLASSICAL WATSON'S THEOREM FOR THE SERIES 3F2

  • Choi, Junesang;Agarwal, P.
    • 호남수학학술지
    • /
    • 제35권4호
    • /
    • pp.701-706
    • /
    • 2013
  • Summation theorems for hypergeometric series $_2F_1$ and generalized hypergeometric series $_pF_q$ play important roles in themselves and their diverse applications. Some summation theorems for $_2F_1$ and $_pF_q$ have been established in several or many ways. Here we give a proof of Watson's classical summation theorem for the series $_3F_2$(1) by following the same lines used by Rakha [7] except for the last step in which we applied an integral formula introduced by Choi et al. [3].

CERTAIN IDENTITIES ASSOCIATED WITH GENERALIZED HYPERGEOMETRIC SERIES AND BINOMIAL COEFFICIENTS

  • Lee, Keum-Sik;Cho, Young-Joon;Choi, June-Sang
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제8권2호
    • /
    • pp.127-135
    • /
    • 2001
  • The main object of this paper is to present a transformation formula for a finite series involving $_3F_2$ and some identities associated with the binomial coefficients by making use of the theory of Legendre polynomials $P_{n}$(x) and some summation theorems for hypergeometric functions $_pF_q$. Some integral formulas are also considered.

  • PDF

CERTAIN CLASSES OF INFINITE SERIES DEDUCIBLE FROM MELLIN-BARNES TYPE OF CONTOUR INTEGRALS

  • Choi, Junesang;Agarwal, Praveen
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제20권4호
    • /
    • pp.233-242
    • /
    • 2013
  • Certain interesting single (or double) infinite series associated with hypergeometric functions have been expressed in terms of Psi (or Digamma) function ${\psi}(z)$, for example, see Nishimoto and Srivastava [8], Srivastava and Nishimoto [13], Saxena [10], and Chen and Srivastava [5], and so on. In this sequel, with a view to unifying and extending those earlier results, we first establish two relations which some double infinite series involving hypergeometric functions are expressed in a single infinite series involving ${\psi}(z)$. With the help of those series relations we derived, we next present two functional relations which some double infinite series involving $\bar{H}$-functions, which are defined by a generalized Mellin-Barnes type of contour integral, are expressed in a single infinite series involving ${\psi}(z)$. The results obtained here are of general character and only two of their special cases, among numerous ones, are pointed out to reduce to some known results.

FORMULAS DEDUCIBLE FROM A GENERALIZATION OF GOTTLIEB POLYNOMIALS IN SEVERAL VARIABLES

  • Choi, Junesang
    • 호남수학학술지
    • /
    • 제34권4호
    • /
    • pp.603-614
    • /
    • 2012
  • Gottlieb polynomials were introduced and investigated in 1938, and then have been cited in several articles. Very recently Khan and Akhlaq introduced and investigated Gottlieb polynomials in two and three variables to give their generating functions. Subsequently, Khan and Asif investigated the generating functions for the $q$-analogue of Gottlieb polynomials. In this sequel, by modifying Khan and Akhlaq's method, Choi presented a generalization of the Gottlieb polynomials in $m$ variables to present two generating functions of the generalized Gottlieb polynomials ${\varphi}^m_n({\cdot})$. Here, we show that many formulas regarding the Gottlieb polynomials in m variables and their reducible cases can easily be obtained by using one of two generating functions for Choi's generalization of the Gottlieb polynomials in m variables expressed in terms of well-developed Lauricella series $F^{(m)}_D[{\cdot}]$.

EXTENDED WRIGHT-BESSEL FUNCTION AND ITS PROPERTIES

  • Arshad, Muhammad;Mubeen, Shahid;Nisar, Kottakkaran Sooppy;Rahman, Gauhar
    • 대한수학회논문집
    • /
    • 제33권1호
    • /
    • pp.143-155
    • /
    • 2018
  • In this present paper, our aim is to introduce an extended Wright-Bessel function $J^{{\lambda},{\gamma},c}_{{\alpha},q}(z)$ which is established with the help of the extended beta function. Also, we investigate certain integral transforms and generalized integration formulas for the newly defined extended Wright-Bessel function $J^{{\lambda},{\gamma},c}_{{\alpha},q}(z)$ and the obtained results are expressed in terms of Fox-Wright function. Some interesting special cases involving an extended Mittag-Leffler functions are deduced.