• Title/Summary/Keyword: pyrolysis product

Search Result 150, Processing Time 0.033 seconds

Liquefaction Characteristics of HDPE, PP and PS by Isothermal Pyrolysis (HDPE, PP 및 PS의 등온열분해에 의한 액화 특성)

  • Yu, Hong-Jeong;Park, Su-Yul;Lee, Bong-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.198-205
    • /
    • 2002
  • Isothermal pyrolysis of high density polyethylene(HDPE), polypropylene(PP) and polystyrene(PS) was performed at $450^{\circ}C$, respectively. The effect of pyrolysis time on yield and product composition was investigated. Conversion and liquid yield obtained during HDPE pyrolysis continuously increased with time up to 80minutes, but those of PP and PS did not largely change after 35minutes. Each liquid product formed during the pyrolysis was classified into gasoline, kerosene, light oil and wax according to the distillation temperature based on the petroleum product quality standard of Korea Petroleum Quality Inspection Institute. The major liquid product of HDPE pyrolysis was light oiH34 wt.% based on the amount of HDPE treated) and the amounts of the other liquid ingredients(gasoline, kerosene and wax) were almost the same. On the other hand, the pyrolysis of PP produced 27 wt.% gasoline, 22 wt.% kerosene, 24 wt.% light oil and 13wt.% wax, and the pyrolysis of PS produced 56 wt.% gasoline, 12 wt.% kerosene, 9 wt.% light oil and 13 wt.% wax.

A Study of Upgrading of Pyrolysis Wax Oil Obtained from Pyrolysis of Mixed Plastic Waste (혼합폐플라스틱 열분해 왁스오일의 고급화 연구)

  • Lee, Kyong-Hwan;Nam, Ki-Yun;Song, Kwang-Sup;Kim, Geug-Tae;Choi, Jeong-Gil
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.321-324
    • /
    • 2009
  • Upgrading of pyrolysis wax oil has been conducted in a continuous fixed bed reactor at $450^{\circ}C$, 1hour, LHSV 3.5/h. The catalytic degradation using HZSM-5 catalyst are compared with the thermal degradation and also was studied with a function of experimental variables. The raw pyrolysis wax oil shows relatively high boiling point distribution ranging from around $300^{\circ}C$ to $550^{\circ}C$, which has considerably higher boiling point distribution than that of commercial diesel. The product characteristic from thermal degradation shows a similar trend with that of raw pyrolysis wax oil. This means the thermal degradation of pyrolysis wax oil at high degradation temperature is not sufficiently occurred. On the other hand, the catalytic degradation using HZSM-5 catalyst relative to the thermal degradation shows the high conversion of pyrolysis wax oil to light hydrocarbons. This liquid product shows high gasoline range fraction as around 90% fraction and considerably high aromatic fraction in liquid product. Also, in the catalytic degradation the experimental variable such as catalyst amount and reaction temperature was studied.

  • PDF

Hepatotoxicity Assessment of Derived Product from Pyrolysis System for Waste Plastic Recycling (폐플라스틱 재활용을 위한 열분해공정 파생물질의 간독성 평가)

  • Shin Hea Soon
    • Environmental Analysis Health and Toxicology
    • /
    • v.19 no.2
    • /
    • pp.201-206
    • /
    • 2004
  • Recently, waste plastic recycling technology is transforming from Incineration system to pyrolysis gasification system which can derive the resources from environmental waste and charge no more environmental burden to nature. The present study was carried out to investigate the potential acute toxicity of derived product of pyrolysis gasifications system for recycling of waste plastic by a single oral dose in Sprague-Dawley Rats. In order to evaluate the hepatotoxic effects of derived product of pyrolysis gasification system, activities of serum transaminase were measured in rats. No related changes in survivals, clinical signs and the ratio of the liver to body weights of rats were monitored. The results showed that the single oral administration of material of pyrolysis system for recycling of waste plastic did not induce any toxic effect at orally single dose level of 0 and 100, 200, 400, 800mg/kg body weight in rats. We could not find out any significant tocxicity induced by single oral administrate of material of pyrolysis system for recycling of waste plastic.

Pyrolysis of Polyethylene using Batch Microreactor (회분식 미분반응기를 이용한 폴리에틸렌의 열분해특성 연구)

  • CHa, Wang-Seog;Kim, Sang-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.553-556
    • /
    • 2005
  • Pyrolysis of polyethylene was carried out in the stainless steel reactor of internal volume of $40cm^3$. Pyrolysis reactions were performed at temperature $390-450^{\circ}C$ and the pyrolysis product were collected separately as reaction products and gas products. The molecular weight distributions(MWDs) of each liquid product were determined by GC-SIMDIS. Molecular weight of each product were decreased wi th increase of react ion temperature and time.

  • PDF

Liquefaction Characteristics of HDPE and LDPE in Low Temperature Pyrolysis (저온 열분해시 HDPE 및 LDPE의 액화 특성)

  • Lee, Bong-Hee;Park, Su-Yul;Kim, Ji-Hyun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.307-318
    • /
    • 2006
  • The pyrolysis of high density polyethylene(HDPE) and low density polyethylene(LDPE) was carried out at temperature between 425 and $500^{\circ}C$ from 35 to 80 minutes. The liquid products formed during pyrolysis were classified into gasoline, kerosene, gas oil and wax according to the petroleum product quality standard of Korea Petroleum Quality Inspection Institute. The conversion and yield of liquid products for HDPE pyrolysis increased continuously according to pyrolysis temperature and pyrolysis time. The influence of pyrolysis temperature was more severe than pyrolysis time for the conversion of HDPE. For example, the liquid products of HDPE pyrolysis at $450^{\circ}C$ for 65 minutes were ca. 30wt.% gas oil, 15wt.% wax, 14wt.% kerosene and 11wt.% gasoline. The increase of pyrolysis temperature up to $500^{\circ}C$ showed the increase of wax product and the decrease of kerosene. The conversion and yield of liquid products for LDPE pyrolysis continuously increased according to pyrolysis temperature and pyrolysis time, similar to HDPE pyrolysis. The liquid products of LDPE pyrolysis at $450^{\circ}C$ for 65 minutes were ca. 27wt.% gas oil, 18wt.% wax, 16wt.% kerosene and 13wt.% gasoline.

A Study of Upgrading Wax Oil Obtained from Pyrolysis of Mixed Plastic Waste with Film Type - The Influence of Catalyst Amount and Reaction Temperature (필름형 혼합폐플라스틱의 열분해로부터 얻은 왁스오일의 고급화연구 - 촉매 양과 반응온도의 영향 -)

  • Lee, Kyong-Hwan;Song, Kwang-Sup;Nam, Ki-Yun
    • New & Renewable Energy
    • /
    • v.5 no.4
    • /
    • pp.52-58
    • /
    • 2009
  • Upgrading of pyrolysis wax oil using HZSM-5 catalyst has been conducted in a continuous fixed bed reactor at $450^{\circ}C$, 1hour, LHSV 3.5/h. The catalytic degradation was studied with a function of catalyst amount and reaction temperature. The raw pyrolysis wax oil shows relatively high boiling point distribution ranging from around $300^{\circ}C$ to $550^{\circ}C$, which has considerably higher boiling point distribution than that of commercial diesel. The catalytic degradation using HZSM-5 catalyst shows the high conversion of pyrolysis wax oil to light hydrocarbons. The liquid product obtained shows high gasoline range fraction as around 90% fraction and considerably high aromatic fraction in liquid product. Here, the experimental variable such as catalyst amount and reaction temperature was influenced on the product distribution.

  • PDF

Liquefaction Characteristics of PP by Pyrolysis (PP의 열분해에 의한 액화 특성)

  • Yu, Hong-Jeong;Lee, Bong-Hee;Park, Su-Yul
    • Journal of the Korean Applied Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.258-264
    • /
    • 2002
  • Pyrolysis of polypropylene(PP) Was performed to find the effects of the pyrolysis temperature(425, 450, 475 and $500^{\circ}C$) and the pyrolysis time(35, 50 and 65minutes), respectively. Conversion and liquid yield obtained during PP pyrolysis continuously increased with the pyrolysis temperature( up to $500^{\circ}C$) and the pyrolysis time(up to 65minutes), especially these were more sensitive to the pyrolysis time at $425^{\circ}C$ than other pyrolysis temperatures. Each liquid product formed during the pyrolysis was classified into gasoline, kerosene, light oil and wax according to the distillation temperature based on the petroleum product quality standard of Korea Petroleum Quality Inspection Institute. The liquid products of PP pyrolysis up to $450^{\circ}C$ were almost same fractions($26{\pm}3$wt.% gasoline, $20{\pm}2$wt.% kerosene and $23{\pm}2$wt.% light oil) except wax($3{\sim}13$wt.%). On the other hand, the pyrolysis of PP from $475^{\circ}C$ to $500^{\circ}C$ produced $26{\pm}3$wt.% wax, $24{\pm}1$wt.% gasoline, $18{\pm}1$wt.% kerosene and $16{\pm}1$wt.% light oil. After all, the main liquid product changed from gasoline to wax with increasing pyrolysis temperature.

The Product properties of Bituminous Coal in Two-Stage Pyrolysis (유연탄의 이단 열분해에 따른 생성물의 특성)

  • 송광섭;이상남;윤형기;김상돈
    • Journal of Energy Engineering
    • /
    • v.2 no.2
    • /
    • pp.208-214
    • /
    • 1993
  • Pyrolysis of bituminous coal has been carried out in a two-stage fixed bed reactor to produce high heating value gas(7000 kcal/N㎥) for industrial or town gas usage. The effects of coke catalyst, pyrolysis temperature (468∼565$^{\circ}C$), and catalytic cracking temperature (700∼850$^{\circ}C$) on the product gas properties from pyrolysis of bituminous coal have been determined. From pyrolysis of Dong Jin coal with coke, the carbon deposition on catalyst is found to be less than 5% of product tar and approximately 15% of total energy iii the parent coal can be recovered as high heating value gas. Oil composition in the product tar from the two-stage pyrolysis is higher than that from low-temperature pyrolysis. The tar produced from pyrolysis below 516$^{\circ}C$ can be easily catalytically cracked but, the tar produced above 565$^{\circ}C$ cannot be cracked easily with catalyst. From the product gas analysis, the catalytic cracking temperature should be maintained below 800$^{\circ}C$ since cracking speed of ethylene increases remarkably with the cracking temperature above 800$^{\circ}C$.

  • PDF

Liquefaction Characteristics of HDPE by Pyrolysis (HDPE의 열분해에 의한 액화 특성)

  • 유홍정;이봉희;김대수
    • Polymer(Korea)
    • /
    • v.27 no.1
    • /
    • pp.84-89
    • /
    • 2003
  • Pyrolysis of high density polyethylene(HDPE) was carried out to find the effects of temperature and time on the pyrolysis. The starting temperature and activation energy of HDPE pyrolysis increased with increasing heating rate. In general, conversion and liquid yield continuously increased with pyrolysis temperature and pyrolysis time. This tendency is very sensitive with pyrolysis time, especially at 45$0^{\circ}C$. Pyrolysis temperature has more influence on the conversion than pyrolysis time. Each liquid product formed during pyrolysis was classified into gasoline, kerosene, light oil and wax according to the distillation temperature based on the petroleum product quality standard of Korea Petroleum Quality Inspection Institute. As a result, the amount of liquid products produced during HDPE pyrolysis at 45$0^{\circ}C$ was in the order of light oil > wax > kerosene > gasoline, and at 475$^{\circ}C$ and 50$0^{\circ}C$, it was wax > light > oil > kerosene > gasoline.

The Calculation Method of Coal Pyrolysis Products Depending on the Coal Rank (탄종별 열분해 생성물의 조성 계산방법)

  • Pak, Ho-Young;Seo, Sang-Il
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.5
    • /
    • pp.442-451
    • /
    • 2010
  • This paper describes the calculation method to obtain the product composition of coal pyrolysis at high pressure and high temperature. The products of coal pyrolysis should be determined for the coal gasifier simulation, and this is the first step of the coal gasifier simulation. The pyrolysis product distribution greatly affects the coal gasifier efficiency such as carbon conversion, cold gas efficiency and the syngas composition at the outlet of the gasifier. The present calculation method is based on the coal ultimate/proximate analysis and several correlations among gasifier pressure, coal properties and pyrolysis products. The calculated products for 5 coals have been compared with those from the commercial pyrolysis model.