DOI QR코드

DOI QR Code

Liquefaction Characteristics of HDPE and LDPE in Low Temperature Pyrolysis

저온 열분해시 HDPE 및 LDPE의 액화 특성

  • Lee, Bong-Hee (Department of Chemical Engineering, Chungbuk National University) ;
  • Park, Su-Yul (Department of Chemical Engineering, Chungbuk National University) ;
  • Kim, Ji-Hyun (Department of Chemical Engineering, Chungbuk National University)
  • 이봉희 (충북대학교 공과대학 화학공학과) ;
  • 박수열 (충북대학교 공과대학 화학공학과) ;
  • 김지현 (충북대학교 공과대학 화학공학과)
  • Published : 2006.12.31

Abstract

The pyrolysis of high density polyethylene(HDPE) and low density polyethylene(LDPE) was carried out at temperature between 425 and $500^{\circ}C$ from 35 to 80 minutes. The liquid products formed during pyrolysis were classified into gasoline, kerosene, gas oil and wax according to the petroleum product quality standard of Korea Petroleum Quality Inspection Institute. The conversion and yield of liquid products for HDPE pyrolysis increased continuously according to pyrolysis temperature and pyrolysis time. The influence of pyrolysis temperature was more severe than pyrolysis time for the conversion of HDPE. For example, the liquid products of HDPE pyrolysis at $450^{\circ}C$ for 65 minutes were ca. 30wt.% gas oil, 15wt.% wax, 14wt.% kerosene and 11wt.% gasoline. The increase of pyrolysis temperature up to $500^{\circ}C$ showed the increase of wax product and the decrease of kerosene. The conversion and yield of liquid products for LDPE pyrolysis continuously increased according to pyrolysis temperature and pyrolysis time, similar to HDPE pyrolysis. The liquid products of LDPE pyrolysis at $450^{\circ}C$ for 65 minutes were ca. 27wt.% gas oil, 18wt.% wax, 16wt.% kerosene and 13wt.% gasoline.

Keywords

References

  1. R. Miranda, H. Pakdel, C. Roy, and C. Vasile, Vacuum Pyrolysis of Commingled Plastics containing PVC II. Product Analysis, Polym, Deg. Stab., 73, 47 (2001) https://doi.org/10.1016/S0141-3910(01)00066-0
  2. K. Ramdoss and R. Tarrer, High-temperature Liquefaction of Waste Plastics, Fuel, 77(4), 293 (1998) https://doi.org/10.1016/S0016-2361(97)00193-2
  3. M. V. S. Murty, P. Rangarajan, E. A. Grulke, and D. Bhattacharyya, Thermal Degradation/Hydrogenation of Commodity Plastics and Characterization of Their Liquefaction Products, Fuel Processing Technology, 49, 75 (1996) https://doi.org/10.1016/S0378-3820(96)01040-5
  4. P. T. Williams and E. A. Williams, Fluidised Bed Pyrolysis of Low Density Polyethylene to Produce Petrochemical Feedstock, J. Anal. Appl. Pyrol., 51, 107 (1999) https://doi.org/10.1016/S0165-2370(99)00011-X
  5. D. S. Ryu, S. S. Kweon, H. S. Lee, and C. K. Lee, Continuous Pyrolysis of Plastic Wastes, J. Kor. Soc. Environ Engineers, 23(2), 207 (2001)
  6. J. Hayashi, T. Nakahara, K. Kusakabe, and S. Morooka, Pyrolysis of Polypropylene in the Presence of Oxygen, Fuel Processing Technology, 55, 265 (1998) https://doi.org/10.1016/S0378-3820(98)00047-2
  7. G. Luo, T. Suto, S. Yasu, and K. Kato, Catalytic Degradation of High Density Polyethylene and Polypropylene into Liquid Fuel in a Powder-particle Fluidized Bed, Polym Deg. Stab., 70, 97 (2000) https://doi.org/10.1016/S0141-3910(00)00095-1
  8. R. Miranda, J. Yang, C. Roy, and C. Vasile, Vacuum Pyrolysis of Commingled Plastics containing PVC I. Kinetic Study, Polym. Deg. Stab., 72, 469 (2001) https://doi.org/10.1016/S0141-3910(01)00048-9
  9. J. A. Conesa, R. Font, A. Marcilla, and A. N. Gracia, Pyrolysis of Polyethylene in a Fluidized Bed Reactor, Energy & Fuel, 8, 1238 (1994) https://doi.org/10.1021/ef00048a012
  10. B. A. Hegberg, W. H. Hallenbeck, and G. R. Brenniman, Plastics Recycling Rates, Resour. Conserv. Recycling, 9, 89 (1993) https://doi.org/10.1016/0921-3449(93)90035-E
  11. M. V. S. Murty, E. A. Grulke, and D. Bhattacharyya, Influence of Metallic Additives on Thermal Degradation and Liquefaction of High Density Polyethylene (HOPE), Polym Deg. Stab., 61, 421 (1998) https://doi.org/10.1016/S0141-3910(97)00228-0
  12. D. S. Scott, S. R. Czernik, J. Piskorz, and A. G. Radlein, Fast Pyrolysis of Plastic Wastes, Energy & Fuel, 4, 407 (1990) https://doi.org/10.1021/ef00022a013
  13. J. A. Conesa R. Font, A. Marcilla, Comparison between the Pyrolysis of Two Types of Polyethylenes in a Fiuidized Bed Reactor, Energy & Fuel, 11, 126 (1997) https://doi.org/10.1021/ef960098w
  14. H. J. Yu, S. Y. Park, and B. H. Lee, Liquefaction Characteristics of HDPE, PP and PS by Isothermal Pyrolysis, J. of Kor. Oil Chemists' Soc, 19(3), 198 (2002)
  15. H. J. Yu, S. Y. Park, and B. H. Lee, Liquefaction Characteristics of PP by Pyrolysis, J. of Kor. Oil Chemists' Soc, 19(4), 258 (2002)
  16. C. G. Phae, Y. S. Kim, C. H. Jo. and U. S. Pyoun, Assessment of Practical use of Recycling Oil from the Pyrolysis of Mixed Waste Plastics, J. of Energy Engineering, 14(2), 159 (2005)