• 제목/요약/키워드: LDPE pyrolysis

검색결과 13건 처리시간 0.213초

저온 열분해시 HDPE 및 LDPE의 액화 특성 (Liquefaction Characteristics of HDPE and LDPE in Low Temperature Pyrolysis)

  • 이봉희;박수열;김지현
    • 한국응용과학기술학회지
    • /
    • 제23권4호
    • /
    • pp.307-318
    • /
    • 2006
  • The pyrolysis of high density polyethylene(HDPE) and low density polyethylene(LDPE) was carried out at temperature between 425 and $500^{\circ}C$ from 35 to 80 minutes. The liquid products formed during pyrolysis were classified into gasoline, kerosene, gas oil and wax according to the petroleum product quality standard of Korea Petroleum Quality Inspection Institute. The conversion and yield of liquid products for HDPE pyrolysis increased continuously according to pyrolysis temperature and pyrolysis time. The influence of pyrolysis temperature was more severe than pyrolysis time for the conversion of HDPE. For example, the liquid products of HDPE pyrolysis at $450^{\circ}C$ for 65 minutes were ca. 30wt.% gas oil, 15wt.% wax, 14wt.% kerosene and 11wt.% gasoline. The increase of pyrolysis temperature up to $500^{\circ}C$ showed the increase of wax product and the decrease of kerosene. The conversion and yield of liquid products for LDPE pyrolysis continuously increased according to pyrolysis temperature and pyrolysis time, similar to HDPE pyrolysis. The liquid products of LDPE pyrolysis at $450^{\circ}C$ for 65 minutes were ca. 27wt.% gas oil, 18wt.% wax, 16wt.% kerosene and 13wt.% gasoline.

폐 농업용 비닐 수지에서 연료유 생성을 위한 원료 수지의 열분해반응에서 칼슘계 촉매의 영향 (The Effects of Calcium-type Catalysts on the Pyrolysis Reaction of Raw Material Resin for Producing from Waste Vinyl to Fuel-oil)

  • 박영철;최주홍;조태호
    • 에너지공학
    • /
    • 제17권1호
    • /
    • pp.8-14
    • /
    • 2008
  • 폐 농업용 비닐을 이용한 연료유 생산 공정을 위한 저밀도폴리에틸렌(LDPE)과 에틸렌비닐아세테이트(EVA) 수지에 대한 열분해 반응 실험을 하였다. 질소 분위기에서 상온에서 $650^{\circ}C$까지의 비등온 조건에서의 열분석기(열중량분석기, 시차주사열량계)와 $420^{\circ}C$의 배치형 반응기에서 무촉매반응과 소성 백운석,소성 석회석, 소성 굴껍질 등의 칼슘계 촉매를 사용한 열분해가 행하여졌다. TGA 실험에서 가열속도에 따라서 LDPE의 열분해 개시온도는 $330{\sim}360^{\circ}C$로 변화되었다. EVA 수지는 $300{\sim}400^{\circ}C$의 1차분해영역과 $425{\sim}525^{\circ}C$의 2차분해 영역에서 열분해 되었다. LDPE 수지에 10% 칼슘계 촉매 첨가 시 소성백운석 첨가가 반응 속도를 증가시켰다. EVA 수지 열분해 실험에서는 칼슘계 촉매 첨가가 열분해 반응을 다소 지연시켰다. DSC 실험에서 칼슘계 촉매는 LDPE 수지 원료의 융해개시온도는 다소 낮추었지만 융해열에 대하여는 영향이 없었다. 소성백운석 첨가 시 열분해열을 20% 정도 감소시켰다. 회분식 반응기에서 소성백운석과 소성 석회석 첨가 시 연료유 생성 수율을 높였으나, 생성 연료유 내의 탄소 수 분포에는 큰 영향이 없었다.

회분식 미분반응기를 이용한 PE계 플라스틱의 열분해특성 연구 (Pyrolysis of PE plastics in the batch type microreactor)

  • 김상훈;장현태;차왕석
    • 한국산학기술학회논문지
    • /
    • 제8권3호
    • /
    • pp.632-638
    • /
    • 2007
  • HDPE와 LDPE에 대한 열분해실험을 반응기 크기가 40 $cm^3$인 스테인레스 스틸 반응기에서 수행하였으며 이때 반응온도는 $410{\sim}460^{\circ}C$이었다. 열분해생성물인 액상생성물과 기상생성물을 분리하여 채취하였고 각 생성물의 분자량분포는 HPLC-GPC와 GC분석을 통해 얻었다. 미분반응기에서 열분해온도와 시간이 증가할수록 액상생성물의 수율과 분자량 분포는 전체적으로 감소하는 경향을 보였다. 열분해반응에서 말단절단의 속도계수인 활성화에너지 값은 HDPE, 63.0kcal/mole, LDPE, 45.7kcal/mole 이었다.

  • PDF

폐 농업용 비닐 수지에서 연료유 생성을 위한 원료 수지의 열분해 반응에서 제올라이트계 촉매의 영향 (The Effects of Zeolite-Type Catalysts on the Pyrolysis Reaction of Raw Material Resin to Produce Fuel-Oil from Waste Vinyl)

  • 박영철;최주홍;조태호
    • Korean Chemical Engineering Research
    • /
    • 제47권3호
    • /
    • pp.303-309
    • /
    • 2009
  • 폐 농업용 비닐을 이용한 연료유 생산 공정을 위한 저밀도폴리에틸렌(LDPE)과 에틸렌비닐아세테이트(EVA) 수지에 대한 열분해 반응 실험을 하였다. 질소 분위기에서 상온에서 $650^{\circ}C$까지의 비등온 조건에서의 열분석기(열중량분석기, 시차주사열량계)와 $420^{\circ}C$의 배치형 반응기에서 무촉매 반응과 천연제올라이트, FCC 촉매, 폐 FCC 촉매, 중국 촉매(촉매 A) 등의 제올라이트계 촉매를 사용한 열분해가 행하여졌다. TGA 실험에서 무적제가 첨가된 EVA 수지는 열분해 개시 온도가 $250^{\circ}C$ 근처로 매우 낮아졌으나, 황토와 장수제 첨가는 열분해를 다소 지연시켰다. LDPE에서 제올라이트 계열 촉매는 촉매 A>폐 FCC 촉매>천연제올라이트>LDPE의 순으로 열분해 반응속도를 높이는데 유효하였다. EVA에서 제올라이트 계열 촉매 첨가 시는 폐 FCC 촉매>천연제올라이트>촉매 A>EVA 수지의 순으로 열분해 반응을 촉진시켰다. DSC 실험에서 제올라이트 계열 촉매 첨가 시 촉매 A>폐 FCC 촉매>천연제올라이트>LDPE의 순으로 융해개시 온도와 열분해열이 낮아졌다. 회분식 실험에서 천연제올라이트 첨가 시 시료 중 가장 높은 액상의 연료유 생성수율을 얻었다.

폴리에틸렌 열분해 생성물의 분포 특성 (Distribution Characteristics of Pyrolysis Products of Polyethylene)

  • 이동환;최홍준;김대수;이봉희
    • 폴리머
    • /
    • 제32권2호
    • /
    • pp.157-162
    • /
    • 2008
  • LDPE, LLDPE 및 HDPE의 반응온도 및 반응시간에 따른 저온 열분해 특성을 연구하였다. 실험범위는 반응온도에 대하여 $425^{\circ}C$에서 $500^{\circ}C$이었고 반응시간은 35분에서 65분이었다. 열분해 생성물들은 한국석유품질검사소의 석유제품 품질기준에 따라 휘발유, 등유, 경유 및 왁스로 분류하였다. TGA분석결과, 3종류의 시료 모두가 가열속도를 증가시킴에 따라 열분해 개시온도가 증가하는 것으로 나타났으며, 일정한 가열속도에서 열분해 개시온도는 LDFE$475^{\circ}C$ 이상에서는 모든 폴리에틸렌 시료의 전환율이 90 wt% 이상이었다. 휘발유와 등유의 수율은 $450^{\circ}C$, 65분에서 최대이었으며 $475^{\circ}C$ 이상에서는 약간 감소하는 것으로 나타났다.

LDPE 반회분식 촉매열분해에서 조업조건이 반응 특성에 미치는 영향 (Effects of Reaction Conditions on the Performance of Catalytic Pyrolysis of LDPE in a Semi-Batch Reactor)

  • 나정걸;임철현;최휘경;정수현
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 추계학술대회
    • /
    • pp.79-82
    • /
    • 2006
  • Fueled by ballooning oil prices, waste plastics are now regarded as being cheap and abundant renewable sources, removing their stigma of dirty wastes Catalytic pryolysis of plastics in liquid phase allows recovery of light fuel oil as well as green treatment of polymerics wastes, and therefore significant efforts have been devoted to this research field. In this study, catalytic Pyrolysis of LDPE was carl ied out in semi-batch reactor which equipped a unit of separation and recirculation. The effect of react ion conditions were examined by analyzing liquid oil yield and carbon number distribution of products

  • PDF

Plug Flow Reactor 모델을 이용한 폐플라스틱의 열분해 특성 해석 (Analysis on the Pyrolysis Characteristics of Waste Plastics Using Plug Flow Reactor Model)

  • 최상규;최연석;정연우;한소영;응웬 반 꾸잉
    • 신재생에너지
    • /
    • 제18권4호
    • /
    • pp.12-21
    • /
    • 2022
  • The pyrolysis characteristics of high-density polyethylene (HDPE), low-density polyethylene (LDPE), and polypropylene (PP) were analyzed numerically using a 1D plug flow reactor (PFR) model. A lumped kinetic model was selected to simplify the pyrolysis products as wax, oil, and gas. The simulation was performed in the 400-600℃ range, and the plastic pyrolysis and product generation characteristics with respect to time were compared at various temperatures. It was found that plastic pyrolysis accelerates rapidly as the temperature rises. The amounts of the pyrolysis products wax and oil increase and then decrease with time, whereas the amount of gas produced increases continuously. In LDPE pyrolysis, the pyrolysis time was longer than that observed for other plastics at a specified temperature, and the amount of wax generated was the greatest. The maximum mass fraction of oil was obtained in the order of HDPE, PP, and LDPE at a specified temperature, and it decreased with temperature. Although the 1D model adopted in this study has a limitation in that it does not include material transport and heat transfer phenomena, the qualitative results presented herein could provide base data regarding various types of plastic pyrolysis to predict the product characteristics. These results can in turn be used when designing pyrolysis reactors.

수지첨가제와 실리카알루미나 계열 무기물이 LDPE 수지의 열분해에 미치는 영향 비교 연구 (A Comparision Study of LDPE Pyrolysis over Resin Additives and Inorganic Compounds of Silica Alumina Type)

  • 박영철;최주홍;김남경
    • 대한환경공학회지
    • /
    • 제28권6호
    • /
    • pp.596-602
    • /
    • 2006
  • 저밀도폴리에틸렌에 첨가되는 무적제와 장수제가 수지의 열분해에 미치는 영향과 폐수지에 함께 포함되어 수집되는 황토 성분 및 촉매로서의 실리카-알루미나 계열의 무기물이 수지의 연료유 변환 반응에 미치는 영향을 열분석기(열중량분석기, 시차주사열량계)와 배치형 반응기에서 살펴보았다. TGA 실험에서 무적제, 장수제, 황토의 첨가는 LDPE 만의 열분해에 비하여 최대열분해속도 온도($T_{max}$)를 증가시켰다. 실리카알루미나 계열 무기물은 활성백토, 규조토, 벤토나이트, 퍼라이트, 고령토 순으로 반응속도를 증가시켰다. DSC 실험에서 무적제와 황토가 첨가되면 LDPE 수지만의 경우보다 융해열과 열분해열을 낮추는 효과를 보였다. 실리카-알루미나 계열에서는 벤토나이트 첨가 시가 융해열을 20% 정도, 열분해열은 25% 정도 감소시켰다. 회분식 반응기에서 황토를 첨가 할 경우 초기 연료유 생성 속도는 다소 낮으나 최종 오일 수율은 높아지는 효과를 보였다. 실리카-알루미나 계열의 촉매에서는 벤토나이트 첨가 시가 오일 수율 향상이 높게 나타났다. 탄소분석에서는 전체적으로 무촉매 열분해실험에서보다는 무적제나 장수제 첨가 시 생성 연료유의 탄소 수가 낮은 쪽으로 이동되었다. 황토 첨가 시는 $C_{12}$ 이하의 휘발유 성분이 감소되었다. $C_{23}$ 이하의 성분 함유량은 벤토나이트, 퍼라이트, 고령토, 활성백토 첨가 시 무촉매 열분해의 경우 보다 증가하였으나 규조토 첨가 시는 큰 차이가 없는 것으로 나타났다. 실험에 사용된 실리카-알루미나 계열의 무기물 중 벤토나이트가 열분해열과 연료유 수율 및 연료유 특성을 고려하여 가장 유효하였다.

혼합폐플라스틱의 열분해를 통한 회수오일의 이용가능성 평가 (Assessment of Practical Use of Recycling Oil from the Pyrolysis of Mixed Waste Plastics)

  • 배재근;김영신;조창호
    • 에너지공학
    • /
    • 제14권2호
    • /
    • pp.159-166
    • /
    • 2005
  • 국내에서 폐플라스틱 발생량은 증가하고 있지만 이에 대한 처리방법 및 재활용은 부족한 실정이다. 하지만 최근에 플라스틱과 같은 고분자물질의 처리 방법으로 열분해기술에 대한 관심이 증가하고 있다. 본 연구에서는 혼합폐플라스틱의 처리 및 생성되는 재생유의 이용가능성을 평가하기위해 폐플라스틱의 각 재질별 TGA와 DCS분석을 통한 열분해특성 파악과 재생유의 품질검사 및 성상분석을 통한 이용가능성을 평가하였다. 온도변화에 대한 재질별 플라스틱의 열분해는 PP, LDPE, HDPE, PET, PS,기타 순으로 이루어짐을 확인할 수 있었다. 이러한 각 재질별 플라스틱의 열분해 특성을 기초로 하여 혼합폐플라스틱의 열분해처리 조건을 설정하였고, Batch식 열분해 플랜트를 가동하며 혼합폐플라스틱을 처리하였다. 열분해 처리시 발생되는 가연성가스를 포집, 냉각 및 정제과정을 거쳐 오일을 생산하고, 시중에서 판매되고 있는 연료유와 재생유를 한국산업규격의 석유품질검사법에 준하여 분석하였다. 재생유의 품질은 낮은 인화점을 제외하고는 모두 품질기준에 적합한 것으로 분석되었고, 연료유와의 성상을 비교한 결과 등유와 경유 중간의 성상을 나타내었다. 따라서 혼합폐플라스틱을 열분해 처리해 생성된 오일은 연료유로 이용이 가능하므로 신재생에너지로 활용이 충분할 것으로 확인되었다.

HZSM-5를 이용한 LDPE-LLDPE-EVA공중합체 혼합물의 접촉 열분해 반응에 미치는 Gallium 첨가 효과 (Effect of Gallium Addition to HZSM-5 on Catalytic Pyrolysis of an LDPE-LLDPE-EVA Copolymer Mixture)

  • 전종기;김현진;김민지;강태원;박영권
    • 공업화학
    • /
    • 제18권1호
    • /
    • pp.58-63
    • /
    • 2007
  • 본 연구는 농업용 필름을 제조하는데 사용되는 LDPE, LLDPE 및 EVA공중합체로 구성된 혼합물의 접촉 열분해 반응에 있어서 HZSM-5 촉매에 Ga을 첨가했을 경우 기체 및 액상 생성물의 수율, 탄소 수 분포 등에 미치는 영향을 조사하는 것을 목적으로 한다. Ga/HZSM-5를 사용한 결과, HZSM-5에 비해 방향족 화합물의 생성이 증가함을 알 수 있었다. 특히 기상 반응을 수행했을 때 더 많은 방향족 화합물을 얻을 수 있었다. 또한 촉매 양을 증가시키고 촉매층 온도를 $500^{\circ}C$ 이상으로 유지한 결과 더 높은 방향족 수율이 얻어졌다. 생성물의 탄소 수 분포는 Ga 첨가에 의해 별로 영향을 받지 않았다.