• Title/Summary/Keyword: pyrolysis GC

Search Result 141, Processing Time 0.03 seconds

A Study on the Co-pyrolysis Characteristics of PVC and PS Mixtures with ZnO (ZnO를 첨가한 PVC와 PS 혼합물의 열분해 특성에 관한 연구)

  • Oh, Sea Cheon;Jung, Myung Uk;Kim, Hee Taik;Lee, Hae Pyeong
    • Applied Chemistry for Engineering
    • /
    • v.16 no.4
    • /
    • pp.513-518
    • /
    • 2005
  • The co-pyrolysis characteristics of poly(vinyl chloride) (PVC) and polystyrene (PS) mixtures with ZnO have been studied by thermogravimetry (TG) and gas chromatograph-mass spectrometry (GC-MS) under various mixing ratios and reaction temperatures. From this work, it was found that the yield of liquid products increased as PS in mixtures increased, whereas that of gaseous products decreased. And as ZnO in mixtures increased, the yields of gaseous products and HCI decreased. The optimal reaction temperature for the maximum yield of liquids products and the control of HCI gas was $500^{\circ}C$.

Formation of Polybrominated Dibenzo-p-dioxins/Furans (PBDDs/Fs) by the Pyrolysis of 2,4-Dibromophenol, 2,6-Dibromophenol, and 2,4,6-Tribromophenol

  • Na, Yun-Cheol;Hong, Jong-Ki;Kim, Kang-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.4
    • /
    • pp.547-552
    • /
    • 2007
  • This study examined the thermal reactions of 2,4-dibromophenol (diBP), 2,6-diBP and 2,4,6-triBP. The products obtained under pyrolytic conditions were analyzed by gas chromatography/mass spectrometry (GC/MS). 2,7-dibromodibenzo-p-dioxin (diBDD) was the major compound produced from the thermal reaction of 2,4-diBP. In addition, monoBDD and triBDDs were obtained through a process of debromination and bromination, respectively. The pyrolysis of 2,6-diBP and 2,4,6-triBP produced two major brominated dioxin isomers through direct condensation and a Smiles rearrangement. The two ortho-Brs in 2,6-diBP and 2,4,6-triBP mainly led to the production of dioxins, whereas in addition to 2,7-diBDD, 2,4-diBP produced two furans as minor products, 2,8-dibromodibenzofuran (diBDF) and 2,4,8-triBDF, through the intermediate dihydroxybiphenyl (DOHB). The maximum yield of the major dioxins was obtained at 400 oC, and decomposition by debromination at 500 oC resulted in less substituted bromodioxins.

Transformation of dissolved organic matter in a constructed wetland: A molecular-level composition analysis using pyrolysis-gas chromatography mass spectrometry

  • Park, Jongkwan;Choi, Mijin;Cho, Jaeweon;Chon, Kyongmi
    • Environmental Engineering Research
    • /
    • v.23 no.4
    • /
    • pp.390-396
    • /
    • 2018
  • This study investigated the transformation of dissolved organic matter (DOM) in a free-water surface flow constructed wetland. Pyrolysis gas chromatography-mass spectrometry (Py-GC/MS) coupled with preparative high-performance liquid chromatography (prep-HPLC) was used to analyze the compositions of biopolymers (polysaccharides, amino sugars, proteins, polyhydroxy aromatics, lipids and lignin) in DOM according to the molecular size at three sampling points of the water flow: inflow, midflow, and outflow. The prep-HPLC results verified the decomposition of DOM through the decrease in the number of peaks from three to one in the chromatograms of the sampling points. The Py-GC/MS results for the degradable peaks indicated that biopolymers relating to polysaccharides and proteins gradually biodegraded with the water flow. On the other hand, the recalcitrant organic fraction (the remaining peak) in the outflow showed a relatively high concentration of aromatic compounds. Therefore, the ecological processes in the constructed wetland caused DOM to become more aromatic and homogeneous. This indicated that the constructed wetland can be an effective buffer area for releasing biochemically stable DOM, which has less influence on biological water quality indicators, e.g., biochemical oxygen demand, into an aquatic ecosystem.

Thermal Degrndation of High Molecular Components obtained from Kiln Pyrolysis Reactor (킬른 열분해 반응기로부터 생성된 고분자량 성분의 열적분해)

  • Oh, Sea-Cheon;Ryu, Jae-Hun;Kwak, Hyun;Bae, Seong-Youl;Lee, Kyung-Hwan;Liu, Daivd
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.623-626
    • /
    • 2007
  • 킬른형 열분해 반응기를 이용하여 혼합폐플라스틱의 열분해로부터 얻어진 고분자성분의 열적분해 특성에 관한 연구를 TGA와 GC-MS를 이용하여 수행하였다. 열적분해의 속도론적 연구는 $10{\sim}50^{\circ}C/min$ 사이의 여러 가열속도에서 비등온 질량감소 기술을 이용하여 수행하였으며 활성화 에너지 및 반응 차수와 같은 속도 상수들에 대한 정보를 얻기 위하여 문헌에 제시된 여러 가지의 속도론 해석방법을 이용하여 질량감소곡선 및 그 미분 값을 해석하였다. 또한 회분식 열분해 반응기를 이용하여 반응온도에 따른 액상 생성물의 수율변화를 고찰하였으며 GC-MS를 이용하여 액상 생성물의 반응온도 증가에 따른 특성연구를 수행하였다.

  • PDF

Influence of the Structural Characteristics of Amino Acids on Direct Methylation Behaviors by TMAH in Pyrolysis

  • Choi, Sung-Seen;Ko, Ji-Eun
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.11
    • /
    • pp.2542-2548
    • /
    • 2009
  • Direct methylation behaviors of 20 amino acids with tetramethylammonium hydroxide (TMAH) were studied under diluted conditions with silica. Amino acid concentration was controlled by dilution with silica ($SiO_2$) and the molar ratios of amino acid/silica were 0.20, 0.50, and 2.0. The molar ratios of amino acid/TMAH (0.51 - 4.64) also varied. It was found that arginine, asparagine, aspartic acid, cysteine, glutamic acid, and glutamine did not generate any directly methylated pyrolysis products, whereas alanine, glycine, isoleucine, leucine, methionine, phenylanaline, valine, and proline generated all the directly methylated pyrolysis products. Tri- and tetra methylated products of lysine consisted of two types. Histidine and threonine hardly generated the partly methylated products. Mono- and dimethylated products of serine, tryptophan, and tyrosine were not observed. Relative intensities of the methylated products varied with the amino acid concentration, TMAH concentration, and pyrolysis temperature. Direct methylation behaviors of amino acids were explained by the structural characteristics of amino acids.

Characterization of Lignin Structure in Chemithermomechanical Pulp Predicting Photo-Yellowing Level by Pyrolysis-Gas Chromatography with Tetrabuthylammonium Hydroxide

  • Ona, Toshihiro;Yoshioka, Aki;Kojima, Yasuo;Seino, Teruyuki;Mizumoto, Miho;Nozaki, Hideo;Ishida, Yasuyuki;Ohtani, Hajime
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2006.06a
    • /
    • pp.173-176
    • /
    • 2006
  • Pyrolysis-gas chromatography (Py-GC) in the presence of organic alkali of tetrabutylammonium hydroxide (TBAH) was applied to characterize the polyphenol fragments with a carbonyl group causing different magnitude of photo-yellowing in chemithermomechanical pulp (CTMP) papers. Two different origin of CTMP papers prepared from different individuals of Eucalyptus globulus trees showing high and low yellowing after photo-irradiation was compared before photo-irradiation. As a result, 7 peaks assigned to a series of phenol compounds with a carbonyl group, derived mainly from lignin, gave significant amount of phenol compounds with a carbonyl group for the paper sample of latent high yellowing, i.e., butoxy-and syringaldehyde, butoxy-and syringylacetone, butoxy-acetoguaiacone, butoxy-acetosyringone, butoxy-acetoethylsyringone, 3-methoxy-4-butoxy butyl ester, and 3,5-dimethoxy-4-butoxy butyl ester, using Py-GC/mass spectrometry (MS). The Py-GC method combined with TBAH successfully characterized polyphenol fragments with a carbonyl group causing differ high photo-yellowing in CTMP papers using a microgram order of samples.

  • PDF

Thermal Degradation Kinetics of Antimicrobial Agent, Poly(hexamethylene guanidine) Phosphate

  • Lee, Sang-Mook;Jin, Byung-Suk;Lee, Jae-Wook
    • Macromolecular Research
    • /
    • v.14 no.5
    • /
    • pp.491-498
    • /
    • 2006
  • The thermal degradation of poly(hexamethylene guanidine) phosphate (PHMG) was studied by dynamic thermogravimetric analysis (TGA) and pyrolysis-GC/MS (p-GC). Thermal degradation of PHMG occurs in three different processes, such as dephosphorylation, sublimation/vaporization of amine compounds and decomposition/ recombination of hydrocarbon residues. The kinetic parameters of each stage were calculated from the Kissinger, Friedman and Flynn-Wall-Ozawa methods. The Chang method was also used for comparison study. To investigate the degradation mechanisms of the three different stages, the Coats-Redfern and the Phadnis-Deshpande methods were employed. The probable degradation mechanism for the first stage was a nucleation and growth mechanism, $A_n$ type. However, a power law and a diffusion mechanism, $D_n$ type, were operated for the second degradation stage, whereas a nucleation and growth mechanism, $A_n$ type, were operated again for the third degradation stage of PHMG. The theoretical weight loss against temperature curves, calculated by the estimated kinetic parameters, well fit the experimental data, thereby confirming the validity of the analysis method used in this work. The life-time predicted from the kinetic equation is a valuable guide for the thermal processing of PHMG.

Liquefaction Characteristics of Polyethylene-polystyrene Mixture by Pyrolysis at Low Temperature (Polyethylene-polystyrene 혼합물의 저온 열분해에 의한 액화특성)

  • Lee, Bong-Hee;Kim, Su-Ho;Choi, Hong-Jun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.495-502
    • /
    • 2008
  • To investigate the synergy effect on the pyrolysis of mixture of polyethylene(PE) and polystyrene(PS), the pyrolysis of PE, PS and the mixture of PE-PS was carried out in a batch reactor at the atmospheric pressure and $450^{\circ}C$. The pyrolysis time was from 20 to 80 mins. The liquid products formed during pyrolysis were classified into gas, gasoline, kerosene, gas oil and heavy oil according to the distillation temperatures based on the petroleum product quality standard of Korea Institute of Petroleum Quality. The analysis of the product oils by GC/MS showed that the new components produced by mixing were not detected. The synergy effect according to mixing of PE and PS did not also appear. The conversion and yield of mixtures were in proportion to the mixing ratio of sample.

Formation of Pyro-products by the Pyrolysis of Monobromophenols

  • Na, Yun-Cheol;Seo, Jung-Ju;Hong, Jong-Ki
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.9
    • /
    • pp.1276-1280
    • /
    • 2003
  • Thermal behavior of bromphenols was investigated by direct pyrolysis at high temperature. The thermal degradation products formed by the pyrolysis of mono-bromophenols (o-, m-, and p-) were identified by gas chromatography-mass spectrometry. During the pyrolysis reactions, several kinds of dioxins and furans were produced, and the relative ratio of pyro-products was dependent on the substituted position of bromine in phenolic structure due to the effect of symmetry and steric hindrance. The formation of dioxins can be explained by the phenoxy radical addition and Br atom elimination at an ortho-carbon site on phenolic structure. On the other hand, the formation of furans can be explained by the ortho-ortho carbon coupling of phenoxy radicals at unsubstituted sites to form o, o'-dihydroxydiphenyl intermediate via its keto-tautomer, followed by $H_2O$ elimination. The pyrolysis temperature has also a substantial effect on the dimerized products quantities but little effect on the type of pyro-products. Moreover, the formation mechanism of pyro-products was suggested on the basis of products identified.

Study on the Pyrolysis of Polyphenols from Tobacco by Direct Inlet/MS (Direct Inlet/MS를 이용한 잎담배중 폴리페놀 화합물의 열분해에 관한 연구)

  • 박진우
    • YAKHAK HOEJI
    • /
    • v.26 no.2
    • /
    • pp.123-128
    • /
    • 1982
  • Direct inlet/MS was used to investigate the pyrolysis pathway and the pyrolyzates of tobacco polyphenols as precursor of catechol which has been known as one of the most potent co-carcinogen from cigarette smoke. Caffeic acid, catechol and quercetin, catechol were detected from the pyrolyzates of chlorogenic acid and rutin, respectively. Interrelationship between polyphenols from tobacco leaf and catechol from cigarette smoke was investigated by using HPLC and GC. These results reveal that chlorogenic acid is the most significant precursor of catechol in cigarette smoke.

  • PDF