A Study on the Co-pyrolysis Characteristics of PVC and PS Mixtures with ZnO

ZnO를 첨가한 PVC와 PS 혼합물의 열분해 특성에 관한 연구

  • Oh, Sea Cheon (Department of Environmental Engineering, Kongju National University) ;
  • Jung, Myung Uk (Department of Chemical Engineering, Hanyang University) ;
  • Kim, Hee Taik (Department of Chemical Engineering, Hanyang University) ;
  • Lee, Hae Pyeong (Department of Fire & Disaster Prevention, Samcheok National University)
  • 오세천 (공주대학교 환경공학과) ;
  • 정명욱 (한양대학교 공과대학 화학공학과) ;
  • 김희택 (한양대학교 공과대학 화학공학과) ;
  • 이해평 (삼척대학교 공과대학 소방방재학과)
  • Received : 2005.01.31
  • Accepted : 2005.05.20
  • Published : 2005.08.10

Abstract

The co-pyrolysis characteristics of poly(vinyl chloride) (PVC) and polystyrene (PS) mixtures with ZnO have been studied by thermogravimetry (TG) and gas chromatograph-mass spectrometry (GC-MS) under various mixing ratios and reaction temperatures. From this work, it was found that the yield of liquid products increased as PS in mixtures increased, whereas that of gaseous products decreased. And as ZnO in mixtures increased, the yields of gaseous products and HCI decreased. The optimal reaction temperature for the maximum yield of liquids products and the control of HCI gas was $500^{\circ}C$.

혼합비율 및 반응온도의 변화에 따른 ZnO가 첨가된 PVC와 PS의 혼합 열분해 특성에 관한 연구를 TG와 GC-MS를 이용하여 수행하였다. 본 연구로부터 혼합물에 있어서 PS의 양이 증가할수록 액상 생성물은 증가하였으며 기상 생성물은 감소함을 알 수 있었다. 또한 ZnO의 첨가량이 증가할수록 기상 생성물과 염화수소의 발생량은 감소하였으며 염화수소의 발생 억제 및 액상 생성물의 최대수율을 얻기 위한 최적의 반응온도는 $500^{\circ}C$임을 알 수 있었다.

Keywords

References

  1. J. L. Easterly and M. Burnham, Biomass and Bioenergy, 10, 79 (1996) https://doi.org/10.1016/0961-9534(95)00063-1
  2. L. Sorum, M. G. Gronli, and J. E. Hustad, Fuel, 80, 1217 (2001) https://doi.org/10.1016/S0016-2361(00)00218-0
  3. J. W. Park, S. C. Oh, H. P. Lee, and K. O. Yoo, J KSEE, 21, 1595 (1999)
  4. M. S. Kim, S. C. Oh, H. P. Lee, H. T. Kim, K. O. Yoo, H. E. Ryu, W. T. Kwon, and B. H. Lee, HWAHAK KONGHAK, 38, 330 (2000)
  5. J-K. Koo and S-W. Kom, Waste Manage. Res., 11, 515 (1993) https://doi.org/10.1177/0734242X9301100606
  6. C-H. Wu, C-Y. Chang, J-L. Hor, S-M. Shih, L-W. Chen, and F-W. Chang, Waste Manage., 13, 221 (1993) https://doi.org/10.1016/0956-053X(93)90046-Y
  7. S. C. Oh, C.-Y. Lee, H. J. Jang, H. C. Jun, H. P. Lee, and H. T. Kim, J. Korean Ind. Eng. Chem., 14, 1149 (2003)
  8. S. J. Woo, MS Thesis, KATST, Seoul, Korea (1975)
  9. S. J. Hong, S. C. Oh, H. P. Lee, H. T. Kim, and K. O. Yoo, HWAHAK KONGHAK, 37, 515 (1999)
  10. G. E. Bertolini and J. Fontaine, Conservation & Recycling, 10, 331 (1987) https://doi.org/10.1016/0361-3658(87)90064-6
  11. W. Kaminsky, J. Analytical & Applied Pyrolysis, 8, 439 (1985) https://doi.org/10.1016/0165-2370(85)80042-5
  12. D. W. Shun, Y. S. Ghim, S. H. Cho, and J. E. Son, J. Korea Society of Waste Management, 10, 195 (1993)
  13. H. Ukei and T. Hirose, Catalyst Today, 62, 67 (2000) https://doi.org/10.1016/S0920-5861(00)00409-0
  14. J. S. Bharwaj, V. Kumar, and K. Palanivelu, Thermochim. Acta, 131, 241 (1988) https://doi.org/10.1016/0040-6031(88)80076-5
  15. M. A. Uddin and Y. Sakata, Ind. Eng. Chem. Res., 38, 1406 ( 1999) https://doi.org/10.1021/ie980445k
  16. R. R. Stomberg, S. Straus, and B. G. Achhammer, J. Polym. Sci., 35, 355 (1959) https://doi.org/10.1002/pol.1959.1203512904