• Title/Summary/Keyword: pyrimethanil

Search Result 14, Processing Time 0.02 seconds

Establishment of Pre-Harvest Residue Limit of Fungicides Pyrimethanil and Trifloxystrobin during Cultivation of Persimmon (단감 재배기간 중 살균제 pyrimethanil과 trifloxystrobin의 생산단계 잔류허용기준 설정)

  • Lee, Dong-Yeol;Kim, Yeong-Jin;Lee, So-Jung;Cho, Kyu-Song;Kim, Sang-Gon;Park, Min-Ho;Kang, Kyu-Young
    • Korean Journal of Environmental Agriculture
    • /
    • v.31 no.1
    • /
    • pp.45-51
    • /
    • 2012
  • BACKGROUND: This study was carried out to establish pre-harvest residue limit of fungicides pyrimethanil and trifloxystrobin in persimmon, based on dissipation and biological half-lives of two fungicides residue. METHODS AND RESULTS: Both pyrimethanil and trifloxystrobin were extracted with acetonitrile, clean-up with $NH_2$ SPE cartridge and residue were analyzed by HPLC/DAD. Limit of Detection was 0.01 mg/kg. Average recovery were $81{\pm}1.62%$, $98{\pm}1.58%$ of pyrimethanil, and $91{\pm}2.94%$, $98{\pm}1.25%$ of trifloxystrobin at fortification levels at 0.1 and 0.5 mg/kg, respectively. CONCLUSION: The biological half-lives of pyrimethanil were 15.6 and 11.6 days at sprayed with recommended and double dosage, respectively. The biological half-lives of trifloxystrobin were 10.4 and 10.3 days at sprayed with recommended and double dosage, respectively. The pre-harvest residue limit of pyrimethanil and trifloxystrobin were recommended as 2.69 and 0.83 mg/kg for 10 days before harvest, respectively.

Biological Half-lives of Fungicides in Korean Melon under Greenhouse Condition (시설재배 참외 중 살균제의 생물학적 반감기)

  • Lee, Ju-Hee;Jeon, Young-Hwan;Shin, Kab-Sik;Kim, Hyo-Young;Park, Eun-Jeong;Kim, Tae-Hwa;Kim, Jang-Eok
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.4
    • /
    • pp.419-426
    • /
    • 2009
  • This study was conducted to know the biological half-lives and dissipation patterns of fungicides, pyrimethanil, chlorothalonil and tetraconazole in Korean melon under green house condition. The instrument for analyzing pyrimethanil and chlorothalonil was HPLC equipped with UV detector. Initial residue amounts of pyrimethanil were 0.16 mg/kg at recommended rate and 0.28 mg/kg at double recommended rate in Korean melon. The biological half-lives of pyrimethanil were 11.2 days at recommended rate and 10.1 days at double recommended rate in Korean melon. In case of chlorothalonil, initial residue amounts of chlorothalonil were 0.06 mg/kg at recommended and 0.11 mg/kg at double recommended rate in Korean melon. The biological half-lives of chlorothalonil in Korean melon were 3.4 days at recommended rate and 6.6 days at double recommended rate. The instrument for analyzing tetraconazole was GLC equipped with electron capture detector. Initial residue amounts of tetraconazole were 0.14 mg/kg at recommended and 0.22 mg/kg at double recommended rate in Korean melon, respectively. The biological half-lives of tetraconazole were 9.6 days at recommended rate and 18.5 days at double recommended rate in Korean melon.

Establishment of Pre-Harvest Residue Limit for Pyrimethanil and Methoxyfenozide during Cultivation of grape (포도(Vitis vinifera L.) 중 Pyrimethanil 및 Methoxyfenozide의 생산단계 잔류허용기준 설정)

  • Kim, Ji Yoon;Woo, Min Ji;Hur, Kyung Jin;Manoharan, Saravanan;Kwon, Chan-Hyeok;Hur, Jang Hyun
    • The Korean Journal of Pesticide Science
    • /
    • v.19 no.2
    • /
    • pp.81-87
    • /
    • 2015
  • The present study was aimed to predict the pre-harvest residue limits (PHRLs) of pyrimethanil (fungicide) and methoxyfenozide (insecticide) in grape, and to estimate their biological half-lives and residual characteristics. The pesticides were sprayed once on grape in two different fields 10 days before harvest. At the end of 0, 1, 2, 3, 5, 7 and 10 days after application, samples were harvested for further analysis. The residual pesticides were extracted with acetonitrile and partitioned with dichloromethane, and the high-performance liquid chromatography with diode array detector (HPLC/DAD) was employed for the residue analysis. The results obtained in the present study show that the limit of detection of both pesticides were found to be $0.01mg\;kg^{-1}$. The recoveries of these pesticides were ranged between 80.6% and 102.5% with coefficient of variation lower than 10%. The biological half-lives of both pesticides were observed in field 1 and field 2 which shows 7.7 and 7.4 days for pyrimethanil and 5.1 and 6.1 days for methoxyfenozide, respectively. Further, the PHRL of pyrimethanil and methoxyfenozide was found to be $8.90mg\;kg^{-1}$ and $5.51mg\;kg^{-1}$, respectively at 10 days before harvest. Consequently, the present study suggests that the residual amounts of both pesticides will be lower than the maximum residue limits (MRLs) when grape is harvested.

Effectiveness of Different Classes of Fungicides on Botrytis cinerea Causing Gray Mold on Fruit and Vegetables

  • Kim, Joon-Oh;Shin, Jong-Hwan;Gumilang, Adiyantara;Chung, Keun;Choi, Ki Young;Kim, Kyoung Su
    • The Plant Pathology Journal
    • /
    • v.32 no.6
    • /
    • pp.570-574
    • /
    • 2016
  • Botrytis cinerea is a necrotrophic pathogen causing a major problem in the export and post-harvest of strawberries. Inappropriate use of fungicides leads to resistance among fungal pathogens. Therefore, it is necessary to evaluate the sensitivity of B. cinerea to various classes of fungicide and to determine the effectiveness of different concentrations of commonly used fungicides. We thus evaluated the effectiveness of six classes of fungicide in inhibiting the growth and development of this pathogen, namely, fludioxonil, iprodione, pyrimethanil, tebuconazole, fenpyrazamine, and boscalid. Fludioxonil was the most effective ($EC_{50}$ < $0.1{\mu}g/ml$), and pyrimethanil was the least effective ($EC_{50}=50{\mu}g/ml$), at inhibiting the mycelial growth of B. cinerea. Fenpyrazamine and pyrimethanil showed relatively low effectiveness in inhibiting the germination and conidial production of B. cinerea. Our results are useful for the management of B. cinerea and as a basis for monitoring the sensitivity of B. cinerea strains to fungicides.

Chemical Resistance and Control of Dollar Spot Caused by Sclerotinia homoeocarpa on Turfgrass of Golf Courses in Korea (한국 골프장 잔디에서의 Sclerotinia homoeocarpa의 약제 저항성 및 방제)

  • Kim, Jeong-Ho;Choi, Hee-Youl;Shim, Gyu-Yul;Kim, Young-Ho
    • Asian Journal of Turfgrass Science
    • /
    • v.24 no.2
    • /
    • pp.170-175
    • /
    • 2010
  • A total of 24 isolates of S. homoeocarpa were isolated from 16 golf courses in Korea. Chemical resistance of 24 isolates was determined by in vitro fungal growth on fungicide-amended media with thiophanatemethyl (Benzimidazole fungicide family), tebuconazole (demethylation inhibitor fungicide family: DMI), and iprodione (dicarboximide fungicide family). Results indicated that 83.3% of 24 isolates were resistant to iprodione, 62.5% resistant to thiophanate-methyl and 0% resistant to tebuconazale. The dual resistance of iprodione and thiophanate-methyl was 58.3.%. Occurrence rate of fungicide resistance of thiophanate-methyl and iprodione had no relation to turfgrass varieties and isolated locations of pathogen. In the filed test, procymidone, boscalid, and fluquinconazole+pyrimethanil effectively controlled the dollar spot of creeping bentgrass.

Antifungal activity of pesticides to control dry rot and blue mold during garlic storage (마늘 저장 중 마름썩음병과 푸른곰팡이병 억제를 위한 농약의 살균활성)

  • You, Oh-Jong;Lee, Yong-Hoon;Jin, Yong-Duk;Kim, Jin-Bae;Hwang, Se-Gu;Han, Sang-Hyun;Kim, Jang-Eok
    • The Korean Journal of Pesticide Science
    • /
    • v.11 no.4
    • /
    • pp.331-338
    • /
    • 2007
  • The major fungal diseases which effecting garlic storage are blue mold and dry rot, caused by Penicillium hirsutum and Fusarium oxysporum, respectively. In order to reduce the damage by the pathogenic fungi, here we report the effects of 11 fungicides tested to reduce spoilage during storage of garlics. In the in vitro antimicrobial activity test, the fungicides, diphenylamine, prochloraz and tebuconazole showed 0.3, 2.2, and 1.3 nun inhibition zone to F. oxysporium, and cyprodinil, diphenylamine, fenbuconazole, hexaconazole, penconazole, prochloraz, propiconazole, pyrimethanil and tebuconazole exhibited 0.2, 2.4, 0.8, 0.4, 1.2, 1.5, 1.2, 0.4 and 1.5 mm to P. hirsutum, respectively. To test the in vivo control effect, when the diphenylamine, prochloraz, and tebuconazole were treated by standard concentration, the fungal mycelium of F. oxysporium started to grow 5 days after inoculation, and 80, 63.3 and 83.3% of the inoculated cloves are infected 11 days after inoculation. When the tebuconazole were treated by standard concentration, the P. hirsutum was completely inhibited the growth of the fungi. In case of diphenylamine, penconazole and propiconazole treatment, the P. hirsutum was observed 7 days after inoculation and $20{\sim}23.3%$ of the cloves were infected 11 days after inoculation. When cyprodinil, prochloraz and pyrimethanil were treated, pathogens occurred 5 days after inoculation and $60{\sim}100%$ of the cloves infected 11 days after inoculation. Three fungicides such as diphenylamine, prochloraz and tebuconazole also suppressed remarkably the infection and growth of F. oxysporium and P. hirsutum on garlic when both of the pathogens are inoculated after the garlic cloves were dipped for 10 min in the suspension of each agrochemical. Overall, diphenylamine, prochloraz and tebuconazole showed effective control efficacy on dry rot and blue mold There was significant correlation between in vitro and in vivo assay in diphenylamine and prochloraz to F. oxysporum and cyprodinil, prochloraz and pyrimethanil to P. hirsutum.

A Survey on Pesticide Residues of Commercial Flowering Teas (국내 유통중인 식용꽃차의 잔류농약 실태조사)

  • Park, Jungwook;Lee, Hyanghee;Oh, Musul;Kim, Jongpil;Jang, Taekwan;You, Youna;Ha, Dongryong;Kim, Eunsun;Seo, Kyewon
    • The Korean Journal of Pesticide Science
    • /
    • v.17 no.1
    • /
    • pp.1-5
    • /
    • 2013
  • This study was conducted to the amount of pesticide residue in 21 different kinds of 100 commercial flowering teas. Multi-residue analyses of 203 pesticides was performed using the GC-ECD, GC-NPD, GC-MSD, and LC-MS/MS. Pesticide residues were detected in 4 samples (4%) of which 4 samples (4%) violated the maximum residue limits. 4 samples violating the limit were all imported teas. Pesticides detected were chlorpyrifos, flufenoxuron, lufenuron, pyrimethanil and methoxyfenozide. These results indicate the need of continuous monitoring of pesticide residue needs for safety of flowering teas.

Monitoring for the Resistance of Botrytis cinerea Causing Gray Mold Against Mepanipyrim (Mepanipyrim에 대한 잿빛곰팡이병균의 저항성 검정)

  • Kim, Ah Hyeong;Kim, Seon Bo;Han, Kee Don;Kim, Heung Tae
    • The Korean Journal of Pesticide Science
    • /
    • v.19 no.3
    • /
    • pp.329-334
    • /
    • 2015
  • With 86 isolates of Botrytis cinerea obtained from diseased fruits of tomato, strawberry and cucumber, it was conducted to detect the fungicide resistance of B. cinerea against mepanipyrim through an agar dilution method. FGA medium was used for monitoring the resistance. Among 86 isolates of B. cinerea, resistant isolates were composed by 23.3%, which was different according to regions isolating the pathogen. In accordance with isolation region, the isolation frequency of resistant isolates was as follows; that of Gyeonggi, Gyeongnam/Pusan and chungnam was 28.6%, 33.3% and 12.8%, respectively. The resistant isolates of B. cinerea showed the cross resistance between mepanipyrim and pyrimethanil. Also the pathogenicity of B. cinerea resistant to mepanipyrim was high as like that of sensitive isolates. Because of them, it should be necessary to manage the spraying system of mepanipyrim and the monitoring for the fungicide resistance.

Effect of Skin Sooty and Decay Disease Control on ‘Niitaka’ Pear Fruit for Storage (신고배 저장중 과피얼룩 및 부패병에 대한 방제 효과)

  • Lee, Jung-Sup;Choi, Jin-Ho;Park, Jong-Han;Kim, Dae-Hyun;Han, Kyung-Sook;Han, You-Kyoung
    • Research in Plant Disease
    • /
    • v.15 no.3
    • /
    • pp.230-235
    • /
    • 2009
  • Postharvest skin sooty dapple and decay disease of pear fruit often originates at small stain symptoms that occurred during harvest and handling. Experiments were conducted to characterize the effect of timing of application of disease control materials, and to evaluate sequential postharvest applications of fungicides or fungicides and bio-control agents. Fungicides and bio-control agents were increasingly less effective when the period between harvest and application was prolonged. Thiabendazole (TBZ) applied to fruit without artificial wounding or inoculation effectively reduced skin sooty and decay disease when applied within 3 weeks or 6 weeks in 2 years of study. TBZ, Fludioxonil and pyrimethanil were effective in controlling skin sooty and decay disease at artificial wounds inoculated with Cladosporium tenuissimum up to 14 days after inoculation. Application of TBZ at harvest followed 3 weeks later by application of Fludioxonil was superior to application of TBZ at harvest alone. Two bacterial biocontrol agents reduced skin sooty and decay disease at pear wounds inoculated with C. tenuissimum up to 14 days after inoculation with C. tenuissimum, but were ineffective when applied at 28 days after inoculation. Of possible sequential arrangements of fungicide and bio-control treatments, application of the most effective material promptly after harvest generally resulted in the highest level of disease control.

Survey of Fungicide Resistance for Chemical Control of Botrytis cinerea on Paprika

  • Yoon, Cheol-Soo;Ju, Eun-Hee;Yeoung, Young-Rog;Kim, Byung-Sup
    • The Plant Pathology Journal
    • /
    • v.24 no.4
    • /
    • pp.447-452
    • /
    • 2008
  • Four hundred and sixty six isolates of B. cinerea were obtained from infected leaves, stems and fruits of paprika grown in greenhouses or plastic film houses in Gangwon province, Korea, between August and November in 2006 and 2007. These isolates were classified into five representative phenotypes of resistant (R) and sensitive (S) reactions as SSR, SRR, RSS, RRS and RSR according to the responses of isolates against benzimidazole, dicarboximide and N-phenyl-carbamate fungicide in order. The percentage of five phenotypes were 51.3, 2.4, 35.6, 8.1 and 2.6%, respectively. The SSR phenotype (51.3%) was the most common. Among the nineteen fungicide products evaluated to compare their efficacy against gray mold pathogen on the paprika fruit inoculated with fungal mycelia, the mixture of diethofencarb and carbendazim was the most effective followed by iprodione, boscalid, the mixture of iprodione and thiophanate-methyl, fludioxonil, polyoxin-B, fluazinam, the mixture of tebuconazole and tolyfluanid and procymidone; while in the assay methods inoculated with fungal spores, the mixture of tebuconazole and tolyfluanid was the most effective in controlling gray mold followed by boscalid, fludioxonil, the mixture of diethofencarb and carbendazim and the mixture of pyrimethanil and chlorothalonil.