• Title/Summary/Keyword: pyramid network algorithm

Search Result 17, Processing Time 0.023 seconds

Infrared and visible image fusion based on Laplacian pyramid and generative adversarial network

  • Wang, Juan;Ke, Cong;Wu, Minghu;Liu, Min;Zeng, Chunyan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.5
    • /
    • pp.1761-1777
    • /
    • 2021
  • An image with infrared features and visible details is obtained by processing infrared and visible images. In this paper, a fusion method based on Laplacian pyramid and generative adversarial network is proposed to obtain high quality fusion images, termed as Laplacian-GAN. Firstly, the base and detail layers are obtained by decomposing the source images. Secondly, we utilize the Laplacian pyramid-based method to fuse these base layers to obtain more information of the base layer. Thirdly, the detail part is fused by a generative adversarial network. In addition, generative adversarial network avoids the manual design complicated fusion rules. Finally, the fused base layer and fused detail layer are reconstructed to obtain the fused image. Experimental results demonstrate that the proposed method can obtain state-of-the-art fusion performance in both visual quality and objective assessment. In terms of visual observation, the fusion image obtained by Laplacian-GAN algorithm in this paper is clearer in detail. At the same time, in the six metrics of MI, AG, EI, MS_SSIM, Qabf and SCD, the algorithm presented in this paper has improved by 0.62%, 7.10%, 14.53%, 12.18%, 34.33% and 12.23%, respectively, compared with the best of the other three algorithms.

THE ELEVATION OF EFFICACY IDENTIFYING PITUITARY TISSUE ABNORMALITIES WITHIN BRAIN IMAGES BY EMPLOYING MEMORY CONTRAST LEARNING TECHNIQUES

  • S. SINDHU;N. VIJAYALAKSHMI
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.4
    • /
    • pp.931-943
    • /
    • 2024
  • Accurately identifying brain tumors is crucial for medical imaging's precise diagnosis and treatment planning. This study presents a novel approach that uses cutting-edge image processing techniques to automatically segment brain tumors. with the use of the Pyramid Network algorithm. This technique accurately and robustly delineates tumor borders in MRI images. Our strategy incorporates special algorithms that efficiently address problems such as tumor heterogeneity and size and shape fluctuations. An assessment using the RESECT Dataset confirms the validity and reliability of the method and yields promising results in terms of accuracy and computing efficiency. This method has a great deal of promise to help physicians accurately identify tumors and assess the efficacy of treatments, which could lead to higher standards of care in the field of neuro-oncology.

Recognition of Bill Form using Feature Pyramid Network (FPN(Feature Pyramid Network)을 이용한 고지서 양식 인식)

  • Kim, Dae-Jin;Hwang, Chi-Gon;Yoon, Chang-Pyo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.4
    • /
    • pp.523-529
    • /
    • 2021
  • In the era of the Fourth Industrial Revolution, technological changes are being applied in various fields. Automation digitization and data management are also in the field of bills. There are more than tens of thousands of forms of bills circulating in society and bill recognition is essential for automation, digitization and data management. Currently in order to manage various bills, OCR technology is used for character recognition. In this time, we can increase the accuracy, when firstly recognize the form of the bill and secondly recognize bills. In this paper, a logo that can be used as an index to classify the form of the bill was recognized as an object. At this time, since the size of the logo is smaller than that of the entire bill, FPN was used for Small Object Detection among deep learning technologies. As a result, it was possible to reduce resource waste and increase the accuracy of OCR recognition through the proposed algorithm.

Vehicle Image Recognition Using Deep Convolution Neural Network and Compressed Dictionary Learning

  • Zhou, Yanyan
    • Journal of Information Processing Systems
    • /
    • v.17 no.2
    • /
    • pp.411-425
    • /
    • 2021
  • In this paper, a vehicle recognition algorithm based on deep convolutional neural network and compression dictionary is proposed. Firstly, the network structure of fine vehicle recognition based on convolutional neural network is introduced. Then, a vehicle recognition system based on multi-scale pyramid convolutional neural network is constructed. The contribution of different networks to the recognition results is adjusted by the adaptive fusion method that adjusts the network according to the recognition accuracy of a single network. The proportion of output in the network output of the entire multiscale network. Then, the compressed dictionary learning and the data dimension reduction are carried out using the effective block structure method combined with very sparse random projection matrix, which solves the computational complexity caused by high-dimensional features and shortens the dictionary learning time. Finally, the sparse representation classification method is used to realize vehicle type recognition. The experimental results show that the detection effect of the proposed algorithm is stable in sunny, cloudy and rainy weather, and it has strong adaptability to typical application scenarios such as occlusion and blurring, with an average recognition rate of more than 95%.

A Target Detection Algorithm based on Single Shot Detector (Single Shot Detector 기반 타깃 검출 알고리즘)

  • Feng, Yuanlin;Joe, Inwhee
    • Annual Conference of KIPS
    • /
    • 2021.05a
    • /
    • pp.358-361
    • /
    • 2021
  • In order to improve the accuracy of small target detection more effectively, this paper proposes an improved single shot detector (SSD) target detection and recognition method based on cspdarknet53, which introduces lightweight ECA attention mechanism and Feature Pyramid Network (FPN). First, the original SSD backbone network is replaced with cspdarknet53 to enhance the learning ability of the network. Then, a lightweight ECA attention mechanism is added to the basic convolution block to optimize the network. Finally, FPN is used to gradually fuse the multi-scale feature maps used for detection in the SSD from the deep to the shallow layers of the network to improve the positioning accuracy and classification accuracy of the network. Experiments show that the proposed target detection algorithm has better detection accuracy, and it improves the detection accuracy especially for small targets.

A Contrast Enhancement Method using the Contrast Measure in the Laplacian Pyramid for Digital Mammogram (디지털 맘모그램을 위한 라플라시안 피라미드에서 대비 척도를 이용한 대비 향상 방법)

  • Jeon, Geum-Sang;Lee, Won-Chang;Kim, Sang-Hee
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.15 no.2
    • /
    • pp.24-29
    • /
    • 2014
  • Digital mammography is the most common technique for the early detection of breast cancer. To diagnose the breast cancer in early stages and treat efficiently, many image enhancement methods have been developed. This paper presents a multi-scale contrast enhancement method in the Laplacian pyramid for the digital mammogram. The proposed method decomposes the image into the contrast measures by the Gaussian and Laplacian pyramid, and the pyramid coefficients of decomposed multi-resolution image are defined as the frequency limited local contrast measures by the ratio of high frequency components and low frequency components. The decomposed pyramid coefficients are modified by the contrast measure for enhancing the contrast, and the final enhanced image is obtained by the composition process of the pyramid using the modified coefficients. The proposed method is compared with other existing methods, and demonstrated to have quantitatively good performance in the contrast measure algorithm.

Single Low-Light Ghost-Free Image Enhancement via Deep Retinex Model

  • Liu, Yan;Lv, Bingxue;Wang, Jingwen;Huang, Wei;Qiu, Tiantian;Chen, Yunzhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.5
    • /
    • pp.1814-1828
    • /
    • 2021
  • Low-light image enhancement is a key technique to overcome the quality degradation of photos taken under scotopic vision illumination conditions. The degradation includes low brightness, low contrast, and outstanding noise, which would seriously affect the vision of the human eye recognition ability and subsequent image processing. In this paper, we propose an approach based on deep learning and Retinex theory to enhance the low-light image, which includes image decomposition, illumination prediction, image reconstruction, and image optimization. The first three parts can reconstruct the enhanced image that suffers from low-resolution. To reduce the noise of the enhanced image and improve the image quality, a super-resolution algorithm based on the Laplacian pyramid network is introduced to optimize the image. The Laplacian pyramid network can improve the resolution of the enhanced image through multiple feature extraction and deconvolution operations. Furthermore, a combination loss function is explored in the network training stage to improve the efficiency of the algorithm. Extensive experiments and comprehensive evaluations demonstrate the strength of the proposed method, the result is closer to the real-world scene in lightness, color, and details. Besides, experiments also demonstrate that the proposed method with the single low-light image can achieve the same effect as multi-exposure image fusion algorithm and no ghost is introduced.

Research and Optimization of Face Detection Algorithm Based on MTCNN Model in Complex Environment (복잡한 환경에서 MTCNN 모델 기반 얼굴 검출 알고리즘 개선 연구)

  • Fu, Yumei;Kim, Minyoung;Jang, Jong-wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.1
    • /
    • pp.50-56
    • /
    • 2020
  • With the rapid development of deep neural network theory and application research, the effect of face detection has been improved. However, due to the complexity of deep neural network calculation and the high complexity of the detection environment, how to detect face quickly and accurately becomes the main problem. This paper is based on the relatively simple model of the MTCNN model, using FDDB (Face Detection Dataset and Benchmark Homepage), LFW (Field Label Face) and FaceScrub public datasets as training samples. At the same time of sorting out and introducing MTCNN(Multi-Task Cascaded Convolutional Neural Network) model, it explores how to improve training speed and Increase performance at the same time. In this paper, the dynamic image pyramid technology is used to replace the traditional image pyramid technology to segment samples, and OHEM (the online hard example mine) function in MTCNN model is deleted in training, so as to improve the training speed.

An Improved PeleeNet Algorithm with Feature Pyramid Networks for Image Detection

  • Yangfan, Bai;Joe, Inwhee
    • Annual Conference of KIPS
    • /
    • 2019.05a
    • /
    • pp.398-400
    • /
    • 2019
  • Faced with the increasing demand for image recognition on mobile devices, how to run convolutional neural network (CNN) models on mobile devices with limited computing power and limited storage resources encourages people to study efficient model design. In recent years, many effective architectures have been proposed, such as mobilenet_v1, mobilenet_v2 and PeleeNet. However, in the process of feature selection, all these models neglect some information of shallow features, which reduces the capture of shallow feature location and semantics. In this study, we propose an effective framework based on Feature Pyramid Networks to improve the recognition accuracy of deep and shallow images while guaranteeing the recognition speed of PeleeNet structured images. Compared with PeleeNet, the accuracy of structure recognition on CIFA-10 data set increased by 4.0%.

Depth Map Estimation Model Using 3D Feature Volume (3차원 특징볼륨을 이용한 깊이영상 생성 모델)

  • Shin, Soo-Yeon;Kim, Dong-Myung;Suh, Jae-Won
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.11
    • /
    • pp.447-454
    • /
    • 2018
  • This paper proposes a depth image generation algorithm of stereo images using a deep learning model composed of a CNN (convolutional neural network). The proposed algorithm consists of a feature extraction unit which extracts the main features of each parallax image and a depth learning unit which learns the parallax information using extracted features. First, the feature extraction unit extracts a feature map for each parallax image through the Xception module and the ASPP(Atrous spatial pyramid pooling) module, which are composed of 2D CNN layers. Then, the feature map for each parallax is accumulated in 3D form according to the time difference and the depth image is estimated after passing through the depth learning unit for learning the depth estimation weight through 3D CNN. The proposed algorithm estimates the depth of object region more accurately than other algorithms.