A Contrast Enhancement Method using the Contrast Measure in the Laplacian Pyramid for Digital Mammogram

디지털 맘모그램을 위한 라플라시안 피라미드에서 대비 척도를 이용한 대비 향상 방법

  • Received : 2014.02.11
  • Accepted : 2014.05.02
  • Published : 2014.04.30

Abstract

Digital mammography is the most common technique for the early detection of breast cancer. To diagnose the breast cancer in early stages and treat efficiently, many image enhancement methods have been developed. This paper presents a multi-scale contrast enhancement method in the Laplacian pyramid for the digital mammogram. The proposed method decomposes the image into the contrast measures by the Gaussian and Laplacian pyramid, and the pyramid coefficients of decomposed multi-resolution image are defined as the frequency limited local contrast measures by the ratio of high frequency components and low frequency components. The decomposed pyramid coefficients are modified by the contrast measure for enhancing the contrast, and the final enhanced image is obtained by the composition process of the pyramid using the modified coefficients. The proposed method is compared with other existing methods, and demonstrated to have quantitatively good performance in the contrast measure algorithm.

X-선 유방촬영술은 유방암의 조기발견을 위해 가장 일반적으로 이용되고 있다. 유방암의 조기 발견과 진단의 효율성을 증가시키기 위하여 많은 영상향상 방법들이 연구개발 되었다. 본 논문은 디지털 맘모그램을 위하여 라플라시안 피라미드에서 대비척도를 이용한 다중 스케일 대비 향상 방법을 제안한다. 제안한 방법은 입력 영상을 가우시안 피라미드와 라플라시안 피라미드로 분해하고, 분해된 다해상도 영상의 피라미드 계수들은 저주파수 성분들과 고주파수 성분들의 비율로 대역 제한된 국부 대비척도를 정의한다. 대비 향상을 위하여 정의된 대비척도를 이용하여 분해된 피라미드 계수들을 수정하고, 수정된 계수들로 피라미드 복원 과정을 거처 최종 향상된 영상을 얻는다. 제안된 방법의 성능은 실험을 통하여 기존 방법들과 향상결과를 비교하고, 대비 측정 알고리즘을 이용한 정량적인 평가결과에서 우수한 성능을 확인하였다.

Keywords

References

  1. R.A. Smith, "Epidemiology of breast cancer categorical course in physics," Tech. Aspects Breast Imaging, Radiol. Soc. N. Amer., pp. 22-33, 1993.
  2. G. Cardenosa, Breast Imaging, Lippincott Williams & Wilkins, 2004.
  3. S.M. Pizer, E.P. Amburn, J.D. Austin, R. Cromartie, A. Geselowitz, T. Greer, B.H. Romeny, J.B. Zimmerman and K. Zuiderveld, "Adaptive histogram equalization and its variations," Computer Vision, Graphics, and Image Processing, Vol. 39, No. 3, pp. 355-368, 1987. https://doi.org/10.1016/S0734-189X(87)80186-X
  4. Y.T. Kim, "Contrast enhancement using brightness preserving bi-histogram equalization," IEEE Transactions on Consumer Electronics, Vol. 43, No. 1, pp. 1-8, 1997. https://doi.org/10.1109/30.580378
  5. S.D. Chen and A.R. Ramli, "Minimum mean brightness error bi-histogram equalization in contrast enhancement," IEEE Transactions on Consumer Electronics, Vol. 49, No. 4, pp. 1310-1319, 2003. https://doi.org/10.1109/TCE.2003.1261234
  6. G. Ramponi, N. Strobel, S.K. Mitra, T. Yu, "Nonlinear unsharp masking methods for image contrast enhancement," Journal of Electronic Imaging Vol. 5, No. 3, pp. 353-366, 1996. https://doi.org/10.1117/12.242618
  7. G. Ramponi, "A cubic unsharp masking technique for contrast enhancement," Signal Processing, Vol.67, pp.211-222, 1998. https://doi.org/10.1016/S0165-1684(98)00038-3
  8. G. Ramponi, A. Polesel, "Rational unsharp masking technique,"Journal of Electronic Imaging, Vol. 7, No. 2, pp. 333-338, 1998. https://doi.org/10.1117/1.482649
  9. L.J. van Vliet, I.T. Young and G.L. Beckers, "A nonlinear laplace operator as edge detector in noisy images," Computer Vision, Graphics, and Image Processing, vol. 45, No. 2, pp. 167-195, 1989. https://doi.org/10.1016/0734-189X(89)90131-X
  10. P. Vuylsteke and E. Schoeters, "Multiscale image contrast amplification(MUSICA)," in Proc. SPIE Image Processing, Vol. 2167, pp. 551-560, 1994.
  11. M. Stahl, T. Aach, T.M. Buzug, S. Dippel and U. Neitzel, "Noise-resistant weak-structure enhancement for digital radiography," in Proc. SPIE Medical Imaging, Vol. 3661, pp. 1406-1417, 1999.
  12. A. Laine, J. Fan and W. Yang, "Wavelets for contrast enhancement of digital mammography," IEEE Engineering in Medicine and Biology Magazine, Vol. 14, No. 5, pp. 536-550, 1995. https://doi.org/10.1109/51.464770
  13. J. Tang, X. Liu and Q. Sun, "A direct image contrast enhancement algorithm in the wavelet domain for screening mammograms," IEEE Journal of Selected Topics in Signal Processing, Vol. 3, No. 1, pp. 74-80, 2009. https://doi.org/10.1109/JSTSP.2008.2011108
  14. S. Dippel, M. Stahl, R. Wiemker and T. Blaffert, "Multiscale contrast enhancement for radiographies: Laplacian Pyramid versus Fast Wavelet Transform," IEEE Transactions on Medical Imaging, Vol. 21, No. 4, pp. 343-353, 2002. https://doi.org/10.1109/TMI.2002.1000258
  15. E. Peli, "Contrast in complex images," Journal of the Optical Society of America, Vol. 7, No. 10, pp. 2032-2040, 1990. https://doi.org/10.1364/JOSAA.7.002032
  16. R.F. Hess, A. Bradley, L. Piotrowski, "Contrast-coding in amblyopia. I. Differences in the neural basis of human amblyopia," Proceedings of Royal Society of London Series B, No. 217, pp. 309-330, 1983.
  17. M. Heath, K. Bowyer, D. Kopans, R. Moore and P. Kegelmeyer, "The digital database for screening mammography," Medical Physics Publishing. In Proceedings of the 5th International Workshop on Digital Mammography, pp. 212-218, 2001.
  18. S.S. Agaian, K. Panetta and A.M. Grigoryan, "Transform-based image enhancement algorithms with performance measure," IEEE Transactions on Image Processing, Vol. 10, No. 3, pp. 367-382, 2001. https://doi.org/10.1109/83.908502