• 제목/요약/키워드: pyramid network algorithm

검색결과 17건 처리시간 0.02초

Infrared and visible image fusion based on Laplacian pyramid and generative adversarial network

  • Wang, Juan;Ke, Cong;Wu, Minghu;Liu, Min;Zeng, Chunyan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권5호
    • /
    • pp.1761-1777
    • /
    • 2021
  • An image with infrared features and visible details is obtained by processing infrared and visible images. In this paper, a fusion method based on Laplacian pyramid and generative adversarial network is proposed to obtain high quality fusion images, termed as Laplacian-GAN. Firstly, the base and detail layers are obtained by decomposing the source images. Secondly, we utilize the Laplacian pyramid-based method to fuse these base layers to obtain more information of the base layer. Thirdly, the detail part is fused by a generative adversarial network. In addition, generative adversarial network avoids the manual design complicated fusion rules. Finally, the fused base layer and fused detail layer are reconstructed to obtain the fused image. Experimental results demonstrate that the proposed method can obtain state-of-the-art fusion performance in both visual quality and objective assessment. In terms of visual observation, the fusion image obtained by Laplacian-GAN algorithm in this paper is clearer in detail. At the same time, in the six metrics of MI, AG, EI, MS_SSIM, Qabf and SCD, the algorithm presented in this paper has improved by 0.62%, 7.10%, 14.53%, 12.18%, 34.33% and 12.23%, respectively, compared with the best of the other three algorithms.

THE ELEVATION OF EFFICACY IDENTIFYING PITUITARY TISSUE ABNORMALITIES WITHIN BRAIN IMAGES BY EMPLOYING MEMORY CONTRAST LEARNING TECHNIQUES

  • S. SINDHU;N. VIJAYALAKSHMI
    • Journal of applied mathematics & informatics
    • /
    • 제42권4호
    • /
    • pp.931-943
    • /
    • 2024
  • Accurately identifying brain tumors is crucial for medical imaging's precise diagnosis and treatment planning. This study presents a novel approach that uses cutting-edge image processing techniques to automatically segment brain tumors. with the use of the Pyramid Network algorithm. This technique accurately and robustly delineates tumor borders in MRI images. Our strategy incorporates special algorithms that efficiently address problems such as tumor heterogeneity and size and shape fluctuations. An assessment using the RESECT Dataset confirms the validity and reliability of the method and yields promising results in terms of accuracy and computing efficiency. This method has a great deal of promise to help physicians accurately identify tumors and assess the efficacy of treatments, which could lead to higher standards of care in the field of neuro-oncology.

FPN(Feature Pyramid Network)을 이용한 고지서 양식 인식 (Recognition of Bill Form using Feature Pyramid Network)

  • 김대진;황치곤;윤창표
    • 한국정보통신학회논문지
    • /
    • 제25권4호
    • /
    • pp.523-529
    • /
    • 2021
  • 4차산업 혁명 시대를 맞아, 기술의 변화가 다양한 분야에 적용되고 있다. 고지서 분야에서도 자동화, 디지털화, 데이터관리가 되고 있다. 사회에서 유통되는 고지서의 형태는 수만 가지 이상이며, 이를 자동화, 디지털화, 데이터관리를 위해서는 고지서 인식이 필수적이다. 현재 다양한 고지서들을 관리하기 위해서 OCR(Optical Character Recognition) 기술을 활용한다. 이때, 정확도를 높이기 위해, 먼저 고지서 양식을 인식하면, OCR 인식 시 더 높은 인식률을 가질 수 있다. 본 논문에서는 고지서 양식을 구분하기 위해 인덱스로 사용할 수 있는 로고를 객체 인식하였으며, 이때 로고의 크기가 전체 고지서 대비 작으므로 딥러닝 기술 중 FPN(Feature Pyramid Network)을 작은 객체 검출에 활용하였다. 결과적으로, 제안하는 알고리즘을 통해서 자원 낭비를 줄이고, OCR 인식 정확도를 높일 수 있었다.

Vehicle Image Recognition Using Deep Convolution Neural Network and Compressed Dictionary Learning

  • Zhou, Yanyan
    • Journal of Information Processing Systems
    • /
    • 제17권2호
    • /
    • pp.411-425
    • /
    • 2021
  • In this paper, a vehicle recognition algorithm based on deep convolutional neural network and compression dictionary is proposed. Firstly, the network structure of fine vehicle recognition based on convolutional neural network is introduced. Then, a vehicle recognition system based on multi-scale pyramid convolutional neural network is constructed. The contribution of different networks to the recognition results is adjusted by the adaptive fusion method that adjusts the network according to the recognition accuracy of a single network. The proportion of output in the network output of the entire multiscale network. Then, the compressed dictionary learning and the data dimension reduction are carried out using the effective block structure method combined with very sparse random projection matrix, which solves the computational complexity caused by high-dimensional features and shortens the dictionary learning time. Finally, the sparse representation classification method is used to realize vehicle type recognition. The experimental results show that the detection effect of the proposed algorithm is stable in sunny, cloudy and rainy weather, and it has strong adaptability to typical application scenarios such as occlusion and blurring, with an average recognition rate of more than 95%.

Single Shot Detector 기반 타깃 검출 알고리즘 (A Target Detection Algorithm based on Single Shot Detector)

  • 풍원림;조인휘
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 춘계학술발표대회
    • /
    • pp.358-361
    • /
    • 2021
  • In order to improve the accuracy of small target detection more effectively, this paper proposes an improved single shot detector (SSD) target detection and recognition method based on cspdarknet53, which introduces lightweight ECA attention mechanism and Feature Pyramid Network (FPN). First, the original SSD backbone network is replaced with cspdarknet53 to enhance the learning ability of the network. Then, a lightweight ECA attention mechanism is added to the basic convolution block to optimize the network. Finally, FPN is used to gradually fuse the multi-scale feature maps used for detection in the SSD from the deep to the shallow layers of the network to improve the positioning accuracy and classification accuracy of the network. Experiments show that the proposed target detection algorithm has better detection accuracy, and it improves the detection accuracy especially for small targets.

디지털 맘모그램을 위한 라플라시안 피라미드에서 대비 척도를 이용한 대비 향상 방법 (A Contrast Enhancement Method using the Contrast Measure in the Laplacian Pyramid for Digital Mammogram)

  • 전금상;이원창;김상희
    • 융합신호처리학회논문지
    • /
    • 제15권2호
    • /
    • pp.24-29
    • /
    • 2014
  • X-선 유방촬영술은 유방암의 조기발견을 위해 가장 일반적으로 이용되고 있다. 유방암의 조기 발견과 진단의 효율성을 증가시키기 위하여 많은 영상향상 방법들이 연구개발 되었다. 본 논문은 디지털 맘모그램을 위하여 라플라시안 피라미드에서 대비척도를 이용한 다중 스케일 대비 향상 방법을 제안한다. 제안한 방법은 입력 영상을 가우시안 피라미드와 라플라시안 피라미드로 분해하고, 분해된 다해상도 영상의 피라미드 계수들은 저주파수 성분들과 고주파수 성분들의 비율로 대역 제한된 국부 대비척도를 정의한다. 대비 향상을 위하여 정의된 대비척도를 이용하여 분해된 피라미드 계수들을 수정하고, 수정된 계수들로 피라미드 복원 과정을 거처 최종 향상된 영상을 얻는다. 제안된 방법의 성능은 실험을 통하여 기존 방법들과 향상결과를 비교하고, 대비 측정 알고리즘을 이용한 정량적인 평가결과에서 우수한 성능을 확인하였다.

Single Low-Light Ghost-Free Image Enhancement via Deep Retinex Model

  • Liu, Yan;Lv, Bingxue;Wang, Jingwen;Huang, Wei;Qiu, Tiantian;Chen, Yunzhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권5호
    • /
    • pp.1814-1828
    • /
    • 2021
  • Low-light image enhancement is a key technique to overcome the quality degradation of photos taken under scotopic vision illumination conditions. The degradation includes low brightness, low contrast, and outstanding noise, which would seriously affect the vision of the human eye recognition ability and subsequent image processing. In this paper, we propose an approach based on deep learning and Retinex theory to enhance the low-light image, which includes image decomposition, illumination prediction, image reconstruction, and image optimization. The first three parts can reconstruct the enhanced image that suffers from low-resolution. To reduce the noise of the enhanced image and improve the image quality, a super-resolution algorithm based on the Laplacian pyramid network is introduced to optimize the image. The Laplacian pyramid network can improve the resolution of the enhanced image through multiple feature extraction and deconvolution operations. Furthermore, a combination loss function is explored in the network training stage to improve the efficiency of the algorithm. Extensive experiments and comprehensive evaluations demonstrate the strength of the proposed method, the result is closer to the real-world scene in lightness, color, and details. Besides, experiments also demonstrate that the proposed method with the single low-light image can achieve the same effect as multi-exposure image fusion algorithm and no ghost is introduced.

복잡한 환경에서 MTCNN 모델 기반 얼굴 검출 알고리즘 개선 연구 (Research and Optimization of Face Detection Algorithm Based on MTCNN Model in Complex Environment)

  • 부옥매;김민영;장종욱
    • 한국정보통신학회논문지
    • /
    • 제24권1호
    • /
    • pp.50-56
    • /
    • 2020
  • 현재 심층 신경망 이론 및 응용 연구의 빠른 개발로 얼굴 인식의 효과가 향상되고 있다. 그러나 심층 신경망 계산의 복잡성과 탐지 환경의 복잡성으로 인해 얼굴을 빠르고 정확하게 감지하는 방법이 주요 문제가 된다. 이 논문은 FDDB, LFW 및 FaceScrub 공개 데이터 세트를 훈련 표본을 사용하는 단순한 MTCNN 모델을 기반으로 둔다. MTCNN 모델을 분류하고 소개하면서 학습 훈련 속도를 높이고 성능을 향상하는 방법을 모색합니다. 본 논문에서는 다이내믹 이미지 피라미드 기술을 이용하여 기존 이미지 Pyramid 기술을 대체하여 샘플을 분할하고 MTCNN 모델의 OHEM을 훈련에서 제거하여 훈련 속도를 향상시켰다.

An Improved PeleeNet Algorithm with Feature Pyramid Networks for Image Detection

  • Yangfan, Bai;Joe, Inwhee
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 춘계학술발표대회
    • /
    • pp.398-400
    • /
    • 2019
  • Faced with the increasing demand for image recognition on mobile devices, how to run convolutional neural network (CNN) models on mobile devices with limited computing power and limited storage resources encourages people to study efficient model design. In recent years, many effective architectures have been proposed, such as mobilenet_v1, mobilenet_v2 and PeleeNet. However, in the process of feature selection, all these models neglect some information of shallow features, which reduces the capture of shallow feature location and semantics. In this study, we propose an effective framework based on Feature Pyramid Networks to improve the recognition accuracy of deep and shallow images while guaranteeing the recognition speed of PeleeNet structured images. Compared with PeleeNet, the accuracy of structure recognition on CIFA-10 data set increased by 4.0%.

3차원 특징볼륨을 이용한 깊이영상 생성 모델 (Depth Map Estimation Model Using 3D Feature Volume)

  • 신수연;김동명;서재원
    • 한국콘텐츠학회논문지
    • /
    • 제18권11호
    • /
    • pp.447-454
    • /
    • 2018
  • 본 논문은 컨볼루션 신경망으로 이루어진 학습 모델을 통해 스테레오 영상의 깊이영상 생성 알고리즘을 제안한다. 제안하는 알고리즘은 좌, 우 시차 영상을 입력으로 받아 각 시차영상의 주요 특징을 추출하는 특징 추출부와 추출된 특징을 이용하여 시차 정보를 학습하는 깊이 학습부로 구성된다. 우선 특징 추출부는 2D CNN 계층들로 이루어진 익셉션 모듈(xception module) 및 ASPP 모듈(atrous spatial pyramid pooling) module을 통해 각각의 시차영상에 대한 특징맵을 추출한다. 그 후 각 시차에 대한 특징 맵을 시차에 따라 3차원 형태로 쌓아 3D CNN을 통해 깊이 추정 가중치를 학습하는 깊이 학습부를 거친 후 깊이 영상을 추정한다. 제안하는 알고리즘은 객체 영역에 대해 기존의 다른 학습 알고리즘들 보다 정확한 깊이를 추정하였다.