• 제목/요약/키워드: pulsed current activated sintering

검색결과 26건 처리시간 0.025초

펄스전류 가열에 의한 나노구조의 (Ti,Mo)C 합성과 동시 급속소결 및 기계적 성질 (Simultaneous Synthesis and Rapid Consolidation of Nanostructured (Ti,Mo)C and Its Mechanical Properties)

  • 조형곤;권한중;손인진
    • 한국재료학회지
    • /
    • 제23권11호
    • /
    • pp.620-624
    • /
    • 2013
  • Nanocrystalline materials have recently received significant attention in the area of advanced materials engineering due to their improved physical and mechanical properties. A solid-solution nanocrystalline powder, (Ti,Mo)C, was prepared via high-energy milling of Ti-Mo alloys with graphite. Using XRD data, the synthesis process was investigated in terms of the phase evolution. Rapid sintering of nanostuctured (Ti,Mo)C hard materials was performed using a pulsed current activated sintering process (PCAS). This process allows quick densification to near theoretical density and inhibits grain growth. A dense, nanostructured (Ti,Mo)C hard material with a relative density of up to 96 % was produced by simultaneous application of 80 MPa and a pulsed current for 2 min. The average grain size of the (Ti,Mo)C was lower than 150 nm. The hardness and fracture toughness of the dense (Ti,Mo)C produced by PCAS were also evaluated. The fracture toughness of the (Ti,Mo)C was higher than that of TiC.

통전가압활성소결에 의한 생체재료용 Ti-HA복합재료 제조 및 특성 (Fabrication and Properties of Ti-HA Composites Produced by Pulsed Current Activated Sintering for Biomaterials)

  • 우기도;강덕수;권의표;문민석;손인진
    • 대한금속재료학회지
    • /
    • 제47권8호
    • /
    • pp.508-515
    • /
    • 2009
  • Ti-6Al-4V biomaterial is widely used as a bone alternative. However, Ti-6Al-4V ELI alloy suffers from numerous problems such as a high elastic modulus and high toxicity. Therefore, non-toxic biomaterials with low elastic moduli need to be developed. Ti-HA(hydroxyapatite) composites were fabricated in the present work by pulsed current activated sintering (PCAS) at $1000^{\circ}C$ under 60 MPa using mixed Ti and HA powders. The effects of HA content on the physical and mechanical properties of the sintered Ti-HA composites have been investigated. X-ray diffraction(XRD) analysis of the Ti-HA composites, including Ti-40 wt%HA in particular, revealed new phases, $Ti_{2}O$, CaO, $CaTiO_3$, and TixPy, formed by chemical reactions between Ti and HA during sintering. The hardness of the Ti-HA composites decreased with an increase in HA content. The corrosion resistance of these composites was observed to be an excellent candidate as a commercial Ti-6Al-4 V ELI alloy. A Ti-5 wt%HA composite fabricated by PCAS is recommended as a new biomaterial, because it offers good corrosion resistance, compressive strength, wear resistance, and biocompatibility, and a low Young's modulus.

기계적 합성된 분말로부터 펄스전류활성 소결에 의한 나노구조 Ti3Al-Al2O3 복합재료 제조 및 기계적 특성 (Mechanical Properties and Fabrication of Nanostructured Ti3Al-Al2O3 Composite from Mechanically Synthesized Powders by Pulsed Current Activated Sintering)

  • 손인진;왕희지;서창열;조성욱;김원백
    • 대한금속재료학회지
    • /
    • 제49권5호
    • /
    • pp.374-379
    • /
    • 2011
  • Nano-powders of $Ti_3Al$ and $2Al_2O_3$ were synthesized from $3TiO_2$ and 5Al powders by high energy ball milling. A nanocrystalline $Al_2O_3$ reinforced composite was consolidated by pulsed current activated sintering within 2 minutes from mechanochemically synthesized powders of $Al_2O_3$ and $Ti_3Al$. Nanocrystalline materials, have received much attention as advanced engineering materials due to their improved physical and mechanical properties. The relative density of the composite was 99.5%. The average obtained hardness and fracture toughness values were 1510 kg/$mm^2$ and $9\;MPa{\cdot}m^{1/2}$, respectively.

기계적 합성된 분말로부터 펄스전류활성 소결에 의한 나노구조 1.5TiAl-Al2O3 복합재료 제조 및 기계적 특성 (Mechanical Properties and Fabrication of Nanostructured 1.5TiAl-Al2O3 Composite by Pulsed Current Activated Sintering)

  • 김원백;왕희지;노기민;조성욱;임재원;손인진
    • 대한금속재료학회지
    • /
    • 제50권4호
    • /
    • pp.310-315
    • /
    • 2012
  • Nano-powders of 1.5TiAl and $Al_2O_3$ were synthesized from $1.5TiO_2$ and 3Al powders by high energy ball milling. Nanocrystalline $Al_2O_3$ reinforced composite was consolidated by pulsed current activated sintering within 2 minutes from mechanochemically synthesized powders of $Al_2O_3$ and 1.5TiAl. The relative density of the composite was 99.5%. The average hardness and fracture toughness values obtained were $1250kg/mm^2$ and $10MPa{\cdot}m^{1/2}$, respectively.

급속소결 방법을 이용한 마찰교반 접합 툴용 WC-Co 소결체 제조 및 특성 평가 (Mechanical Properties and Fabrication of WC-Co Hard Materials by Rapid Sintering Method for Friction Stir Welding Tool Application)

  • 박현국;윤희준;유정한;장준호;손인진;오익현
    • Journal of Welding and Joining
    • /
    • 제30권6호
    • /
    • pp.92-97
    • /
    • 2012
  • Using the pulsed current activated sintering method, the WC-10wt.% Co materials were densified using a WC and Co powder. The WC-Co almost completely dense with a relative density of up to 99.5 % after the simultaneous application of a pressure of 60 MPa and an electric current for 3 minutes almost without any significant change in the grain size. The average grain size of about $0.3{\mu}m$. The hardness and fracture toughness at $1000^{\circ}C$ were about $2200kg/mm^2$ and $9.8MPa.m^{1/2}$, respectively.

나노구조 (W,Ti)C-Graphene 복합재료 급속소결 (Rapid Sintering of Nanocrystalline (W,Ti)C-Graphene Composites)

  • 김성은;손인진
    • 대한금속재료학회지
    • /
    • 제56권12호
    • /
    • pp.854-860
    • /
    • 2018
  • In spite of the many attractive properties of (W,Ti)C, its low fracture toughness limits its wide application. To improve the fracture toughness generally a second phase is added to fabricate a nanostructured composite. In this regard, graphene was considered as the reinforcing agent of (W,Ti)C. (W,Ti)C-graphene composites that were sintered within 2 min using pulsed current activated heating under a pressure of 80 MPa. The rapid consolidation method allowed retention of the nano-scale microstructure by blocking the grain growth. The effect of graphene on the hardness and microstructure of the (W,Ti)C-graphene composite was studied using a Vickers hardness tester and FE-SEM. The grain size of (W,Ti)C was reduced remarkably by the addition of graphene. Furthermore, the hardness decreased and the fracture toughness improved with the addition of graphene.