DOI QR코드

DOI QR Code

Mechanical Properties and Fabrication of WC-Co Hard Materials by Rapid Sintering Method for Friction Stir Welding Tool Application

급속소결 방법을 이용한 마찰교반 접합 툴용 WC-Co 소결체 제조 및 특성 평가

  • Park, Hyun-Kuk (Korea Institute of Industrial Technology (KITECH), Automotive Components R&D Group) ;
  • Youn, Hee-Jun (Korea Institute of Industrial Technology (KITECH), Automotive Components R&D Group) ;
  • Ryu, Jung-Han (Korea Institute of Industrial Technology (KITECH), Automotive Components R&D Group) ;
  • Jang, Jun-Ho (Korea Institute of Industrial Technology (KITECH), Automotive Components R&D Group) ;
  • Shon, In-Jin (Division of Advanced Materials Engineering and the Research Center of Advanced Materials Devlopment, Engineering College, Chonbuk National University) ;
  • Oh, Ik-Hyun (Korea Institute of Industrial Technology (KITECH))
  • 박현국 (한국생산기술연구원 호남권 지역본부 동력부품 연구그룹) ;
  • 윤희준 (한국생산기술연구원 호남권 지역본부 동력부품 연구그룹) ;
  • 유정한 (한국생산기술연구원 호남권 지역본부 동력부품 연구그룹) ;
  • 장준호 (한국생산기술연구원 호남권 지역본부 동력부품 연구그룹) ;
  • 손인진 (전북대학교 신소재 공학부 재료공학과) ;
  • 오익현 (한국생산기술연구원 호남권 지역본부)
  • Received : 2012.11.14
  • Accepted : 2012.12.26
  • Published : 2012.12.31

Abstract

Using the pulsed current activated sintering method, the WC-10wt.% Co materials were densified using a WC and Co powder. The WC-Co almost completely dense with a relative density of up to 99.5 % after the simultaneous application of a pressure of 60 MPa and an electric current for 3 minutes almost without any significant change in the grain size. The average grain size of about $0.3{\mu}m$. The hardness and fracture toughness at $1000^{\circ}C$ were about $2200kg/mm^2$ and $9.8MPa.m^{1/2}$, respectively.

Keywords

References

  1. K. J. Lee, S. H. Kim, H. K. Park and I. H. Oh, KWJS, 29-5 (2011), 552-555 (in Korean)
  2. H. K. Park. S. M. Lee, H. J. Youn, K. S. Bang and I. H. Oh, J. Kor. Inst. Met & Mater. 49 (2011), 40 (in Korean) https://doi.org/10.3365/KJMM.2011.49.1.040
  3. F. L. Zhang, C. Y. Wang and M. Zhu, Scripta Materialia, 49 (2003), 1123-1128 https://doi.org/10.1016/j.scriptamat.2003.08.009
  4. S. G. Shin, Metal and Materials. 6 (2000), 195-201 https://doi.org/10.1007/BF03028212
  5. M. J. Ledoux, C. H. Pham, J. Guille and H. Dunlop, J.Catalysis. 134 (1992), 383-398. https://doi.org/10.1016/0021-9517(92)90329-G
  6. Z. Fang and J. W. Eason, Int. J. of Refractory Met. & Hard Mater. 13 (1995), 297-303 https://doi.org/10.1016/0263-4368(95)92675-A
  7. M. Sommer, W-D. Schubert, E. Zobetz and P. Warbichler, Int. J. of Ref. Met. & Hard Mater. 20 (2002), 41-50 https://doi.org/10.1016/S0263-4368(01)00069-5
  8. H. C. Kim, D. Y. Oh and I. J. Shon, Int. J. of Refract. Met. and Hard Mater. 22 (2004), 197-203 https://doi.org/10.1016/j.ijrmhm.2004.06.006
  9. H. C. Kim, H. K. Park, I. K. Jung, I. Y. Ko and I. J. Shon, Cermics Int.. 34, 1419 (2008), 1419-1423 https://doi.org/10.1016/j.ceramint.2007.03.029
  10. H. C. Kim, Ph D. Thesis, Chonbuk University Chonbuk, 2005, 15-79 (in Korean)
  11. Jia K, Fischer TE, Gallois G. Nanostruct Mater.. 10 (1998), 875-891 https://doi.org/10.1016/S0965-9773(98)00123-8
  12. I. K. Jeong, J. H. Park, J. M. Doh, K. Y. Kim, K. D. Woo, I. Y. Ko and I. J. Shon, J. Kor. Inst. Met & Mater. 46 (2008), 223 (in Korean)