DOI QR코드

DOI QR Code

Mechanical Properties and Fabrication of Nanostructured Ti3Al-Al2O3 Composite from Mechanically Synthesized Powders by Pulsed Current Activated Sintering

기계적 합성된 분말로부터 펄스전류활성 소결에 의한 나노구조 Ti3Al-Al2O3 복합재료 제조 및 기계적 특성

  • Shon, In-Jin (Division of Advanced Materials Engineering and the Research Center of Advanced Materials Development, Engineering College, Chonbuk National University) ;
  • Wang, Hee-Ji (Division of Advanced Materials Engineering and the Research Center of Advanced Materials Development, Engineering College, Chonbuk National University) ;
  • Suh, Chang-Yul (Minerals and Materials Processing Division, Korea Institute of Geoscience, Mining and Materials Resources) ;
  • Cho, Sung-Wook (Minerals and Materials Processing Division, Korea Institute of Geoscience, Mining and Materials Resources) ;
  • Kim, Wonbaek (Minerals and Materials Processing Division, Korea Institute of Geoscience, Mining and Materials Resources)
  • 손인진 (전북대학교 신소재공학부, 신소재개발연구센터) ;
  • 왕희지 (전북대학교 신소재공학부, 신소재개발연구센터) ;
  • 서창열 (한국지질자원연구원) ;
  • 조성욱 (한국지질자원연구원) ;
  • 김원백 (한국지질자원연구원)
  • Received : 2011.03.02
  • Published : 2011.05.25

Abstract

Nano-powders of $Ti_3Al$ and $2Al_2O_3$ were synthesized from $3TiO_2$ and 5Al powders by high energy ball milling. A nanocrystalline $Al_2O_3$ reinforced composite was consolidated by pulsed current activated sintering within 2 minutes from mechanochemically synthesized powders of $Al_2O_3$ and $Ti_3Al$. Nanocrystalline materials, have received much attention as advanced engineering materials due to their improved physical and mechanical properties. The relative density of the composite was 99.5%. The average obtained hardness and fracture toughness values were 1510 kg/$mm^2$ and $9\;MPa{\cdot}m^{1/2}$, respectively.

Keywords

Acknowledgement

Grant : 전략금속 산업원료화 기술개발

Supported by : 한국지질자원연구원

References

  1. Wu X. Intermetallics 14, 1114 (2006). https://doi.org/10.1016/j.intermet.2005.10.019
  2. S. Djanarthany, J.-C. Viala, and J. Bouix, Materials Chemistry and Physics 72, 301 (2001). https://doi.org/10.1016/S0254-0584(01)00328-5
  3. S.-L. Xiao, J. Tian, L.-J. Xu, Y.-Y. Chen, H.-B. Yu, and J.-C. Han, Trans. Nonferrous Met. Soc. China 19, 1423 (2009). https://doi.org/10.1016/S1003-6326(09)60044-3
  4. D.Y. Oh, H. C. Kim, J.K. Yoon, and I.J. Shon, J. Alloys & Compounds 395, 174 (2005). https://doi.org/10.1016/j.jallcom.2004.10.072
  5. Z.W. Li, W. Gao, D.L. Zhang, and Z.H. Cai, Corrosion Science 46, 1997 (2004). https://doi.org/10.1016/j.corsci.2003.10.026
  6. M.F. Ashby and D.R.H. Jones, Engineering Materials 1 (International Series on Materials Science and Technology, Vol.34), Pergamon Press, Oxford, 1986.
  7. J. Karch, R. Birringer, and H. Gleiter. Nature 330 (1987).
  8. A. M. George, J. Iniguuze, and L. Bellaiche, Nature 413 (2001).
  9. D. Hreniak and W. Strek, J. Alloys Comp. 341, 183 (2002). https://doi.org/10.1016/S0925-8388(02)00067-1
  10. Z. Fang and J.W. Eason, Int. J. Refrac. 297 (1995).
  11. A.I.Y. Tok, I.H. Luo, and F.Y.C. Boey, J. Mate. Sci. Eng. A 229 (2004).
  12. I. Y. Ko, S. M. Chae and I. J. Shon, Kor. J. Met. Mater. 48, 417 (2010). https://doi.org/10.3365/KJMM.2010.48.05.417
  13. N.R. Park. M.K. Choe, J,S, Park. W. Kim, and I.J. Shon, Met. Mater. Inst. 15, 765 (2009). https://doi.org/10.1007/s12540-009-0765-x
  14. C.Suryanarayana, M.Grant Norton, X-ray Diffraction A Practical Approach, Plenum Press, New York (1998).
  15. O.Knacke, O.Kubaschewski, K. Hesselmann, Thermochemical Properties of Inorganic Substances, Springer-Verlag, London (1991).
  16. Z. Shen, M. Johnsson, Z. Zhao, and M. Nygren, J. Am. Ceram. Soc. 85, 1921 (2002). https://doi.org/10.1111/j.1151-2916.2002.tb00381.x
  17. J. E. Garay, U. Anselmi-Tamburini, Z. A. Munir, S. C. Glade, and P. Asoka- Kumar, Appl. Phys. Lett. 85, 573 (2004). https://doi.org/10.1063/1.1774268
  18. J. R. Friedman, J. E. Garay. U. Anselmi-Tamburini, and Z. A. Munir, Intermetallics. 12, 589 (2004). https://doi.org/10.1016/j.intermet.2004.02.005
  19. J. E. Garay, J. E. Garay. U. Anselmi-Tamburini, and Z. A. Munir, Acta Mater. 51, 4487 (2003). https://doi.org/10.1016/S1359-6454(03)00284-2
  20. G.R. Anstis, P. Chantikul, B.R. Lawn, and D.B. Marshall, J. Am. Ceram. Soc. 64, 533 (1981). https://doi.org/10.1111/j.1151-2916.1981.tb10320.x
  21. C.M. Ward-Close, R. Minor, and P.J. Doorbar, Intermetallics 4, 217 (1996). https://doi.org/10.1016/0966-9795(95)00037-2